Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neon blue-tailed tree lizard glides like a feather

21.07.2009
Most lacertid lizards are content scurrying in and out of nooks and crannies in walls and between rocks.

Most lacertid lizards are content scurrying in and out of nooks and crannies in walls and between rocks. However, some have opted for an arboreal life style. Neon blue tailed tree lizards (Holaspis guentheri) leap from branch to branch as they scamper through trees in the African forest.

There are even anecdotes that the tiny African tree lizards can glide. But without any obvious adaptations to help them to upgrade a leap to a glide, it wasn't clear whether the reptiles really do take to the air and, if they do, how they remain aloft.

Intrigued by all aspects of lacertid locomotion, Bieke Vanhooydonck from the University of Antwerp and her colleagues, Anthony Herrel and Peter Aerts, decided to find out whether neon blue tailed tree lizards really glide. Recruiting undergraduate Greet Meulepas to the team, they began filming dainty neon blue tailed tree lizards, gliding geckos (Ptychozoon kuhli) and the common wall lizard (Podarcis muralis) as the animals leapt from a 2m high platform to see if the neon blue tailed tree lizards really could glide. Vanhooydonck and her colleagues publish their discovery that H. guentheri glide like feathers on 17 July 2009 in the Journal of Experimental Biology at http://jeb.biologists.org.

Unfortunately, filming the lizards was extremely difficult. Having startled the small animals into leaping off the platform, the team had little control over the animal's direction, and couldn't guarantee that it was parallel to their camera. It was also difficult to capture each trajectory with a single camera and tricky to get the lighting conditions right. But after weeks of persistence the team finally collected enough film, as the lizards leapt, to compare their performances.

At first, it didn't look as if the African lizard was gliding any better than the common wall lizard. Both animals were able to cover horizontal distances of 0.5m after leaping from the platform, while the gliding gecko covered distances greater than 1 m, aided by its webbed feet and skin flaps. But when the team compared the lizards' sizes, they noticed that there was a big difference between the common wall lizard and the tree lizard. The tiny tree lizard only weighed 1.5 g, almost 1/3 of the larger common wall lizard's weight and 1/10 the gliding gecko's mass, so Aerts calculated how far each lizard would travel horizontally if they fell like a stone. This time it was clear that the tiny tree lizard was travelling 0.2m further than Aerts would have expected if it were simply jumping off the platform. The tree lizard was definitely delaying its descent and landing more slowly than the common wall lizard; the tree lizard was gliding.

But how was the tiny tree lizard able to remain airborne for so long? Maybe the lizard was squashing itself flat while gliding to increase its surface area and generate more lift. But when the team analysed the lizards' trajectories, the tree lizard's shape did not change. And when Aerts calculated the amount of lift each lizard generated as they descended, it was clear that the tree lizard was unable to produce a lift force. The team realised that instead of increasing its surface area to generate lift, the tree lizard is able to glide because it is so light. The tree lizard's 'wing loading' (mass:surface area ratio) was the same as that of the gliding gecko (assisted by skin flaps and webbed feet) so the tree lizard was able to glide like a feather because it was so light.

Curious to find out why the tree lizard is so light, Herrel contacted Renaud Boistel, Paul Tafforeau and Vincent Fernandez at the European Synchrotron Radiation Facility to scan all three lizards' bodies. Visualising the animals' skeletons with X-rays, it was clear that the tree lizard's bones were packed full of air spaces, making the lizard's skeleton feather light for gliding.

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>