Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural HIV control may rely on sequence of T cell receptor protein

12.06.2012
Protein on the surface of killer T cells appears to confer ability to suppress viral replication

The rare ability of some individuals to control HIV infection with their immune system alone appears to depend – at least partially – on specific qualities of the immune system's killer T cells and not on how many of those cells are produced.

In a Nature Immunology paper that has received advance online publication, researchers at the Ragon Institute of Massachusetts General Hospital, MIT and Harvard report that – even among individuals sharing a protective version of an important immune system molecule – the ability of HIV-specific killer T cells to control viral replication appears to depend on the particular sequence of the protein that recognizes HIV infected cells.

"We've known for the past 25 years that HIV-infected people have the immune killer cells that recognize and should be able to destroy virus-infected cells, but in most individuals those cells cannot control infection," says Bruce Walker, MD, director of the Ragon Institute and senior author of the Nature Immunology paper. "What this study shows is that the presence of these cells, also called CD8 T cells, is not enough. It turns out that people who can control HIV on their own make killer cells with T cell receptors – proteins that recognize viral fragments displayed on infected cells – that are particularly effective at killing HIV-infected cells."

It has been known for almost two decades that a small minority – about one in 300 – of individuals infected with HIV are naturally able to suppress viral replication with their immune system, keeping viral loads at extremely low levels. In 2006, Ragon Institute investigator Florencia Pereyra, MD, established the International HIV Controllers Study (http://www.hivcontrollers.org/) to investigate genetic and other differences that may underlie this rare ability. Currently more than 1,500 controllers have enrolled in the study.

Several studies have found that particular versions of a molecule called HLA-B, which helps to flag infected cells for destruction by CD8 T cells, are associated with the ability to naturally control HIV infection. But even among individuals who inherit those versions or alleles of HLA-B, only a few are HIV controllers. A 2010 Ragon Institute study published in Science identified five amino acids within HLA-B that appear to affect the ability to control infection, but that study only explained about 20 percent of the difference in viral load between controllers and individuals in whom the infection progressed.

The current study was designed to search for other factors besides HLA-B that contribute to and possibly determine the ability to control HIV infection. Since many things can affect CD8 T cell response, the investigators enrolled only participants known to express the protective HLA-B27 allele. By selecting persons with HLA B-27 who had extremely high viral loads and comparing them to those with B-27 who were able to control virus, the investigators were able to address whether differences in CD8 T cell function were involved. Although this restricted the study population to five HIV controllers and five progressors, the small sample size allowed comprehensive characterization of a broad range of immune cell functions in study participants.

The experiments first confirmed there was no significant difference in the number of HIV-specific CD8 T cells between controllers and progressors but also found significant variability in the protein sequence of all participants' T cell receptors. Tests of particular functional aspects of the CD8 T cell response found that a subset of cells from controllers were quite efficient at killing infected cells and able to respond to HIV mutations that can allow the virus to escape immune control. No such effective cells were found in samples from progressors. Detailed sequencing of HIV-specific CD8 cells from three controllers and two progressors found that the specific protein sequence of T cell receptors – which affects their structure and ability to recognize infected cells – appears to make the difference.

"A big remaining question is why these particularly effective killer cells are generated in some people but not in others. At this point we don't know why, but now we know what we are looking for," says Walker, a professor of Medicine at Harvard Medical School. "We also need to investigate whether a vaccine can induce production of these effective killer cells. HIV is slowly revealing its secrets, and each revelation helps us focus the search for the next secret, bringing us closer and closer to our goal of conquering HIV." Walker is also a Howard Hughes Medical Institute (HHMI) investigator

Co-lead authors of the Nature Immunology paper are Huabiao Chen, PhD, and Zaza Ndhlovu, PhD, Ragon Institute and HHMI. Additional co-authors include Todd Allen, PhD, Florencia Pereyra, MD, and Xu Yu, MD, Ragon Institute; Mark Brockman, PhD, Ragon Institute and Simon Fraser University, Burnaby, Canada; and Daniel Douek, MD, PhD, National Institute for Allergy and Infectious Diseases. Support for the study includes grants from the Harvard Center for AIDS Research, the Bill and Melinda Gates Foundation, the Doris Duke Charitable Foundation, the National Institutes of Health and the Mark and Lisa Schwartz Foundation.

The Ragon Institute of MGH, MIT and Harvard was established in 2009 with a gift from the Philip T. and Susan M. Ragon Foundation, creating a collaborative scientific mission among these institutions to harness the immune system to combat and cure human diseases. The primary initial focus of the institute is to contribute to the development of an effective AIDS vaccine. The Ragon Institute draws scientists and engineers from diverse backgrounds and areas of expertise across the Harvard and MIT communities and throughout the world, in order to apply the full arsenal of scientific knowledge to understanding mechanisms of immune control and immune failure and to apply these advances to directly benefit patients.

Sarah Dionne | EurekAlert!
Further information:
http://www.ragoninstitute.org

More articles from Life Sciences:

nachricht Protein linked to cancer acts as a viscous glue in cell division
08.07.2020 | Rensselaer Polytechnic Institute

nachricht Enzymes as double agents: new mechanism discovered in protein modification
08.07.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities

08.07.2020 | Physics and Astronomy

Engineers use electricity to clean up toxic water

08.07.2020 | Agricultural and Forestry Science

Atomic 'Swiss army knife' precisely measures materials for quantum computers

08.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>