Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural HIV control may rely on sequence of T cell receptor protein

12.06.2012
Protein on the surface of killer T cells appears to confer ability to suppress viral replication

The rare ability of some individuals to control HIV infection with their immune system alone appears to depend – at least partially – on specific qualities of the immune system's killer T cells and not on how many of those cells are produced.

In a Nature Immunology paper that has received advance online publication, researchers at the Ragon Institute of Massachusetts General Hospital, MIT and Harvard report that – even among individuals sharing a protective version of an important immune system molecule – the ability of HIV-specific killer T cells to control viral replication appears to depend on the particular sequence of the protein that recognizes HIV infected cells.

"We've known for the past 25 years that HIV-infected people have the immune killer cells that recognize and should be able to destroy virus-infected cells, but in most individuals those cells cannot control infection," says Bruce Walker, MD, director of the Ragon Institute and senior author of the Nature Immunology paper. "What this study shows is that the presence of these cells, also called CD8 T cells, is not enough. It turns out that people who can control HIV on their own make killer cells with T cell receptors – proteins that recognize viral fragments displayed on infected cells – that are particularly effective at killing HIV-infected cells."

It has been known for almost two decades that a small minority – about one in 300 – of individuals infected with HIV are naturally able to suppress viral replication with their immune system, keeping viral loads at extremely low levels. In 2006, Ragon Institute investigator Florencia Pereyra, MD, established the International HIV Controllers Study (http://www.hivcontrollers.org/) to investigate genetic and other differences that may underlie this rare ability. Currently more than 1,500 controllers have enrolled in the study.

Several studies have found that particular versions of a molecule called HLA-B, which helps to flag infected cells for destruction by CD8 T cells, are associated with the ability to naturally control HIV infection. But even among individuals who inherit those versions or alleles of HLA-B, only a few are HIV controllers. A 2010 Ragon Institute study published in Science identified five amino acids within HLA-B that appear to affect the ability to control infection, but that study only explained about 20 percent of the difference in viral load between controllers and individuals in whom the infection progressed.

The current study was designed to search for other factors besides HLA-B that contribute to and possibly determine the ability to control HIV infection. Since many things can affect CD8 T cell response, the investigators enrolled only participants known to express the protective HLA-B27 allele. By selecting persons with HLA B-27 who had extremely high viral loads and comparing them to those with B-27 who were able to control virus, the investigators were able to address whether differences in CD8 T cell function were involved. Although this restricted the study population to five HIV controllers and five progressors, the small sample size allowed comprehensive characterization of a broad range of immune cell functions in study participants.

The experiments first confirmed there was no significant difference in the number of HIV-specific CD8 T cells between controllers and progressors but also found significant variability in the protein sequence of all participants' T cell receptors. Tests of particular functional aspects of the CD8 T cell response found that a subset of cells from controllers were quite efficient at killing infected cells and able to respond to HIV mutations that can allow the virus to escape immune control. No such effective cells were found in samples from progressors. Detailed sequencing of HIV-specific CD8 cells from three controllers and two progressors found that the specific protein sequence of T cell receptors – which affects their structure and ability to recognize infected cells – appears to make the difference.

"A big remaining question is why these particularly effective killer cells are generated in some people but not in others. At this point we don't know why, but now we know what we are looking for," says Walker, a professor of Medicine at Harvard Medical School. "We also need to investigate whether a vaccine can induce production of these effective killer cells. HIV is slowly revealing its secrets, and each revelation helps us focus the search for the next secret, bringing us closer and closer to our goal of conquering HIV." Walker is also a Howard Hughes Medical Institute (HHMI) investigator

Co-lead authors of the Nature Immunology paper are Huabiao Chen, PhD, and Zaza Ndhlovu, PhD, Ragon Institute and HHMI. Additional co-authors include Todd Allen, PhD, Florencia Pereyra, MD, and Xu Yu, MD, Ragon Institute; Mark Brockman, PhD, Ragon Institute and Simon Fraser University, Burnaby, Canada; and Daniel Douek, MD, PhD, National Institute for Allergy and Infectious Diseases. Support for the study includes grants from the Harvard Center for AIDS Research, the Bill and Melinda Gates Foundation, the Doris Duke Charitable Foundation, the National Institutes of Health and the Mark and Lisa Schwartz Foundation.

The Ragon Institute of MGH, MIT and Harvard was established in 2009 with a gift from the Philip T. and Susan M. Ragon Foundation, creating a collaborative scientific mission among these institutions to harness the immune system to combat and cure human diseases. The primary initial focus of the institute is to contribute to the development of an effective AIDS vaccine. The Ragon Institute draws scientists and engineers from diverse backgrounds and areas of expertise across the Harvard and MIT communities and throughout the world, in order to apply the full arsenal of scientific knowledge to understanding mechanisms of immune control and immune failure and to apply these advances to directly benefit patients.

Sarah Dionne | EurekAlert!
Further information:
http://www.ragoninstitute.org

More articles from Life Sciences:

nachricht Ceramic technologies for highly efficient power-to-X processes
10.10.2019 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Growing and moving
10.10.2019 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>