Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Native ants use chemical weapons to turn back invading Argentine ants

08.06.2011
Stanford sophomores studying ants in a summer course discovered that the local ants were using poison to kill invading Argentine ants. The discovery provides new insight into the war between the local "winter ants" and the South American invaders who have shown up everywhere from California to South Africa.

Argentine ants are taking over the world – or at least the nice temperate parts. They've spread into Mediterranean and subtropical climates across the globe in sugar shipments from Argentina, and no native ant species has been known to withstand their onslaught – until now. A group of Stanford University undergraduate students working on a class project have discovered that a native species, the plucky winter ant, has been using chemical warfare to combat the Argentine tide.

The winter ants – named for their unusual ability to function in cold weather, rather than grind to a halt like most insects – manufacture a poison in a gland in their abdomen that they dispense when under extreme duress. One tiny drop applied to an Argentine ant is enough to put an end to it. In laboratory testing, the poison had a 79 percent kill rate.

"This is the first well-documented case where a native species is successfully resisting the Argentine ant," said Deborah M. Gordon, a biology professor at Stanford who specializes in studying ants and taught the three-week summer class in which the students first saw the winter ants wielding their poison.

"I did not believe it at first," she said. "This is a group of ants that does not have a sting and you don't see them acting aggressively, but the students were able to show very clearly not just that the winter ants are using poison, but when they use it, how they use it and what the impact is."

Gordon and her students presented their findings in a paper published earlier this year in PLoS ONE, a journal published by the Public Library of Science.

Argentine ant invasion
The Argentine ants are happy anyplace that has cool, rainy winters and hot, dry summers. They have conquered the entire coastline around the Mediterranean Sea, parts of South Africa, Hawaii, Japan and Australia, as well as the full length of the California coastline.

"If you live in a Mediterranean climate, the Argentine ant is the ant in your kitchen," Gordon said. "These ants, wherever they become established, wipe out all the native ants."

Courtesy of Leah Kuritzky

Leah Kuritzky marks the trail of some of the winter ants she and her fellow student researchers studied on the Stanford campus.

The extermination of native ants sets off a ripple effect through an ecosystem. Some native ant species that eat seeds have coevolved with certain native grasses and other plants to become a crucial part of the plant's propagation by carrying the seeds to new areas. Without the native ant species to spread their seeds, the grasses can't flourish. Any significant impact on the plants would also likely affect creatures that feed on or nest in the plants.

Argentine ants have been declared agricultural pests in California because of the damage they do to citrus crops. The invaders are partial to areas where the ground has been disturbed, such as plowed fields and construction sites. They also spread through plants sold by nurseries.

The invaders are agriculturalists after a fashion themselves, tending "herds" of aphids and other scale insects that attach to plants and suck out the sugary sap. The ants, in turn, feed on the sugar-rich liquid that the aphids excrete, "quaintly called honeydew," Gordon said. By protecting the aphids from predators, the Argentines enable the insects to spread.

That yummy honeydew is what brings the Argentine invaders and the winter ants into conflict, as winter ants also tend aphids.

The Stanford students began observing the native ants as part of a 2008 short summer class for sophomores called Ecology of Invasions, taught by Gordon. At a variety of locations on the Stanford campus, they started out simply observing and recording ant behavior while visiting each site at the same time every day.

"We were looking at the nest openings of the winter ants and one day it was just winter ants going about their business foraging for food and making trails – just typical ant behavior," said Leah Kuritzky, a student in the class and one of the coauthors of the PLoS ONE paper.

An ant 'massacre'
"The next day we came back and the ground was littered with Argentine ants. There were dead ants all around and there was a lot of fighting around the nest entrances."

In earlier observations, the students had noticed the winter ants occasionally secreting a whitish fluid from their abdomens and, by prodding a few with a paperclip, had figured out that the ants tended to secrete when hassled.

"They would curl their abdomens around and deposit the white secretion on the paper clip used to prod them," said Trevor Sorrells, then a junior who was a teaching assistant for the class.

Watching the combat, the students saw the winter ants use their lethal secretions against the invaders. Intrigued, the group decided to continue the research after the class ended.

Kuritzky did a chemical analysis of the secretion, using gas chromatography and mass spectrometry. She determined that part of the secretion consisted of a type of hydrocarbon, which many social insects use to carry a colony-specific odor that helps them identify friend from foe. But what substance gives the secretion is lethal punch still has to be determined.

L.A. Cicero

Biology Professor Deborah Gordon
"Whatever it is, it is clearly very toxic," Gordon said.
To assess the lethality of the secretion – and how freely the winter ants wielded it – Sorrells and the other students ran a series of "trials by combat" in palm-sized shallow glass petri dishes in the lab.

He organized some group rumbles with 20 ants per dish, varying the ratio of winter ants to Argentine ants to see if that had an effect. He also ran some one-on-one gladiatorial combat in a one-centimeter square "ring."

"It turns out the winter ants use the secretion only when they are really overwhelmed, so it is probably energetically very expensive for the winter ant to manufacture and use this stuff," Gordon said.

In the great outdoors, without petri dish arenas in which to settle their disputes, the winter ants tend to use their secretion either when vastly outnumbered or in the immediate defense of queen and colony.

Gordon has been conducting ant population studies in Stanford's Jasper Ridge Biological Preserve for 18 years, during which she has seen territory change hands as the invaders pushed into the preserve and displaced the winter ants. But several years ago, the winter ants began gaining the upper hand.

"It looks like the Argentine ants are getting pushed back tree by tree," Gordon said. The winter ants are showing up in trees where the Argentine ants had been.

"It seems the winter ants let the Argentine ants find the aphids and then they take over. Over time, the winter ants may be starving the Argentine ants out," she said.

The recent shift in the balance of power may be in part a result of cooler weather, which favors the winter ants, and low rainfall, which inhibits the Argentine ants, Gordon suggested.

So in a natural habitat, without warm buildings in which the Argentine ants can gather around the kitchen hearth, the winter ants can hold the invaders back. But continued development, which creates the disturbed ground and toasty homes that the Argentine ants favor, may well trump the winter ants' chemical weapon in the long run. Already, Gordon said, the Argentine ants in California far outnumber the native winter ants.

Gordon is a professor in the Department of Biology and a senior fellow at Stanford's Woods Institute for the Environment.

The other Stanford undergraduates (past and present) who are coauthors of the PLoS ONE paper are Peter Kauhanen, Jimmy Chen, Cheri Dijamco and Kimberly Basurto. Shelby Sturgis, a graduate student in biology, is also a coauthor, as is Katherine Fitzgerald, who was a graduate student at the time of the study.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>