Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanotechnology: Putting a nanomachine to work


A team of chemists at Ludwig-Maximilians-Universitaet (LMU) in Munich has successfully coupled the directed motion of a light-activated molecular motor to a different chemical unit - thus taking an important step toward the realization of synthetic nanomachines.

Molecular motors are chemical compounds that convert energy into directed motions. For example, it is possible to cause a substituent attached to a specific chemical bond to rotate unidirectionally when exposed to light of a certain wavelength. Molecules of this sort are therefore of great interest as driving units for nanomachines.

In green light: Experiment in Henry Dube's lab.

However, in order to perform useful work, these motors must be integrated into larger assemblies in such a way that their mechanical motions can be effectively coupled to other molecular units. So far, this goal has remained out of reach.

LMU chemist Dr. Henry Dube is a noted specialist in the field of molecular motors. Now he and his team have taken an important step towards achievement of this aim.

As they report in the renowned journal Angewandte Chemie, they have succeeded in coupling the unidirectional motion of a chemical motor to a receiver unit, and demonstrated that motor can not only cause the receiver to rotate in the same direction but at the same time significantly accelerate its rotation.

The molecular motor in Dube's setup is based on the molecule hemithioindigo, which contains a mobile carbon double bond (-C=C-). When the compound is exposed to light of a specific wavelength, this bond rotates unidirectionally.

"In a paper published in 2018, we were able to show that this directional double bond rotation could be transmitted by means of a molecular 'cable' to the single carbon bond rotation of a secondary molecular unit." says Dube. "This single bond itself rotates randomly under the influence of temperature fluctuations. But, thanks to the physical coupling between them, the unidirectional motion of the light-driven motor is transmitted to the single bond, which is forced to rotate in the same direction."

To verify that the 'motorized' bond was actively driving the motion of the single bond, and not simply biasing its direction of rotation, Dube and colleagues added a brake to the system that reduced the thermal motion of the single bond. The modification ensured that the motor would have to expend energy to overcome the effect of the brake in order to cause the single bond to rotate.

"This experiment enabled us to confirm that the motor really does determine the rate of rotation of the single bond - and in fact increases it by several orders of magnitude," Dube explains.

Taken together, these results provide unprecedentedly detailed insights into the mode of operation of an integrated molecular machine. In addition, the experimental setup allowed the authors to quantify the potential energy available to drive useful work, thus yielding the first indication of how much work can effectively be done by a single molecular motor under realistic conditions.

"Our next challenge will be to demonstrate that the energy transmitted in this system can indeed be used to perform useful work on the molecular scale," says Dube.

Media Contact

Dr. Kathrin Bilgeri

Dr. Kathrin Bilgeri | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>