Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology: Probing for interactions

29.11.2011
Nanoparticles offer insights into interactions between single-stranded DNA and their binding proteins

Double-stranded DNA must disentangle itself into single strands during replication or repair to allow functional molecules to bind and perform their various operations. Cellular proteins specifically bind to single-stranded DNA to prevent their premature recombination.

Unfortunately, detailed studies of these DNA–protein interactions have been hindered by the need for expensive instrumentation and time-consuming labelling techniques. Yen Nee Tan at the A*STAR Institute of Materials Research and Engineering and co-workers1 have now developed a convenient method to characterize the interactions between single-stranded DNA and their binding proteins.

The researchers used the optical properties of gold nanoparticles to probe the mechanism of protein–DNA binding. When the nanoparticles were well dispersed in solution, they yielded a bright red color, but when aggregated, the solution changed to blue. Tan and co-workers discovered that when single-stranded DNA and its binding protein were both present in the solution, coupled with a salt that stimulates nanoparticle aggregation, the DNA remained red in color, indicating that the DNA–protein complexes had bound with the nanoparticles through electrosteric stabilization forces. In contrast, when the protein or single-stranded DNA was introduced alone in the salt solution, there was a greater shift to the blue-grey color, indicating nanoparticle aggregation (see image).

“The greatest challenge in this work was to determine the optimum conditions for single-stranded DNA to bind with its binding protein to form complexes that confer the highest stability to gold nanoparticles from salt-induced aggregation,” says Tan.

The researchers attribute binding of the nanoparticles and the DNA–protein complexes to the presence of sulphur-containing groups in the protein, which are known to create strong bonds with gold. The protein molecules alone are smaller in molecular size than the protein–DNA complexes, leading to a less effective steric stabilization of the nanoparticles.

Tan and co-workers showed that there was a minimum length of DNA sequence under which the binding protein–DNA adhesion mechanism could operate. They found that the binding protein had a preference for binding to specific chemical units (bases) which make up DNA, and were able to spot DNA sequence variations, called single nucleotide polymorphisms (SNPs), even at the extreme ends of the molecule which are difficult to identify. Double-stranded DNA with SNPs cannot bind together so closely. The binding protein can thus attach to the dissociated single-stranded DNA to form protein–DNA complexes, offering sites to which gold nanoparticles can adhere.

“We plan to further develop this assay into a hassle-free genotyping assay to detect SNPs in real biological samples containing long genomic DNA,” says Tan.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Modeling predicts blue whales' foraging behavior, aiding population management efforts
18.07.2019 | Oregon State University

nachricht Plant viruses may be reshaping our world
18.07.2019 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A graphene superconductor that plays more than one tune

18.07.2019 | Physics and Astronomy

Plant viruses may be reshaping our world

18.07.2019 | Life Sciences

First-ever visualizations of electrical gating effects on electronic structure

18.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>