Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructures created at UCLA could make gene therapies safer, faster & more affordable

15.03.2018

New method uses 'nanospears' to deliver genes directly to patient cells

UCLA scientists have developed a new method that utilizes microscopic splinter-like structures called "nanospears" for the targeted delivery of biomolecules such as genes straight to patient cells. These magnetically guided nanostructures could enable gene therapies that are safer, faster and more cost-effective.


This image shows an array of nanospears before being released for delivery of genetic information to cells.

Credit: UCLA Broad Stem Cell Research Center/ACS Nano

The research was published in the journal ACS Nano by senior author Paul Weiss, UC Presidential Chair and distinguished professor of chemistry and biochemistry, materials science and engineering, and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Gene therapy, the process of adding or replacing missing or defective genes in patient cells, has shown great promise as a treatment for a host of diseases, including hemophilia, muscular dystrophy, immune deficiencies and certain types of cancer.

Current gene therapy approaches rely on modified viruses, external electrical fields or harsh chemicals to penetrate cell membranes and deliver genes straight to patient cells. Each of these methods has its own shortcomings; they can be costly, inefficient or cause undesirable stress and toxicity to cells.

To overcome these barriers, Weiss and Dr. Steven Jonas, a clinical fellow in the UCLA Broad Stem Cell Research Center Training Program, led a research team that designed nanospears composed of silicon, nickel and gold. These nanospears are biodegradable, can be mass-produced inexpensively and efficiently, and, because of their infinitesimal size -- their tips are about 5,000 times smaller than the diameter of a strand of human hair -- they can deliver genetic information with minimal impact on cell viability and metabolism.

Jonas compared the cutting-edge biomolecule delivery method to real-world delivery methods appearing on the horizon.

"Just as we hear about Amazon wanting to deliver packages straight to your house with drones, we're working on a nanoscale equivalent of that to deliver important health care packages straight to your cells," explained Jonas, who is training in the division of pediatric hematology/oncology at UCLA Mattel Children's Hospital. In the near future, Jonas hopes to apply nanotechnologies to deploy cell and gene therapies quickly and widely to the pediatric cancer patients he treats.

The construction of nanospears was inspired by the work of their collaborators, Hsian-Rong Tseng, a professor of molecular and medical pharmacology, and Xiaobin Xu, a postdoctoral fellow in Weiss' interdisciplinary research group. Tseng and Xu are both co-authors of the study.

"Based on Xiaobin's nanomanufacturing work, we knew how to make nanostructures of different shapes in massive numbers using simple fabrication strategies," said Weiss, who is also a member of the California NanoSystems Institute. "Once we had that in hand, we realized we could make precise structures that would be of value in gene therapies."

Weiss and Jonas are not the first to conceive of using guided nanostructures or robotic "nanomotors" to enhance gene therapies, however existing methods have limited precision and require potentially toxic chemicals to propel the structures to their targets.

By coating their nanospears with nickel, Weiss and Jonas eliminated the need for chemical propellants. A magnet can be held near a lab dish containing cells to manipulate the direction, position and rotation of one or many nanospears. In the future, Weiss and Jonas envision that a magnetic field could be applied outside of the human body to guide nanospears remotely within the body to treat genetic diseases.

Weiss and Jonas tested their nanospears as vehicles for a gene that causes cells to produce a green fluorescent protein. About 80 percent of targeted cells exhibited a bright green glow, and 90 percent of those cells survived. Both numbers are a marked improvement on existing delivery strategies.

Much like gene therapy, many forms of immunotherapy -- a process in which patient-specific immune cells are genetically engineered to recognize and attack cancer cells -- rely on expensive or time-consuming processing methods.

"The biggest barrier right now to getting either a gene therapy or an immunotherapy to patients is the processing time," Jonas said. "New methods to generate these therapies more quickly, effectively and safely are going to accelerate innovation in this research area and bring these therapies to patients sooner, and that's the goal we all have."

Weiss and Jonas have been collaborating with UCLA researchers to optimize the delivery of gene therapy strategies that have long been in the works.

"One of the amazing things about working at UCLA is that for each of the targeted diseases, we collaborate with leading clinicians who already have gene therapies in development," Weiss said. "They have the gene-editing cargo, model cells, animal models and patient cells in place so we are able to optimize our nanosystems on methods that are on the pathway to the clinic."

###

The research was supported by the National Science Foundation, the National Institutes of Health, Hyundai Hope on Wheels, Alex's Lemonade Stand Foundation for Childhood Cancer, the National Science Foundation of China, the China Scholarship Council, the Royal Thai Government as well as the UCLA Broad Stem Cell Research Center Training Program.

Media Contact

Mirabai Vogt-James
mvogt@mednet.ucla.edu
310-983-1163

 @uclahealth

http://www.uclahealth.org/ 

Mirabai Vogt-James | EurekAlert!
Further information:
http://newsroom.ucla.edu/releases/nanostructures-created-by-ucla-scientists-could-make-gene-therapies-safer-faster-and-more-affordable
http://dx.doi.org/10.1021/acsnano.8b00763

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>