Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructure boosts efficiency in energy transport

05.03.2009
Complimentary semiconductors enhance 'water-splitting' technique

Overcoming a critical conductivity challenge to clean energy technologies, Boston College researchers have developed a titanium nanostructure that provides an expanded surface area and demonstrates significantly greater efficiency in the transport of electrons.

The challenge has vexed researchers pursuing solar panels thick enough to absorb sunlight, yet thin enough to collect and transport electrons with minimal energy loss. Similarly, the relatively new science of water splitting requires capturing energy within semiconductor materials and then efficiently transporting charges ultimately used to generate hydrogen.

Boston College Asst. Prof of Chemistry Dunwei Wang and members of his lab found that incorporating two titanium-based semiconductors into a nano-scale structure improved the efficiency of power-collecting efforts by approximately 33 percent, the team reported in the online edition of the Journal of the American Chemical Society.

The team achieved a peak conversion efficiency of 16.7 percent under ultraviolet light, reported Wang and his co-authors, BC graduate students Yongjing Lin and Sa Zhou, post doctoral researcher Xiaohua Liu and undergraduate Stafford Sheehan. That compared to an efficiency of 12 percent from a structure composed only of titanium dioxide (TiO2).

Wang said the efficiency gains within the novel material can serve so-called water-splitting, where semiconductor catalysts have been shown to separate and store hydrogen and oxygen gases.

"The current challenge in splitting water involves how best to capture photons within the semiconductor material and then grab and transport them to produce hydrogen," Wang says. "For practical water splitting, you want to generate oxygen and hydrogen separately. For this, good electrical conductivity is of great importance because it allows you to collect electrons in the oxygen-generation region and transport them to the hydrogen-generation chamber for hydrogen production."

By using two crystalline semiconductors – materials critical to the processes of energy capture and transport – Wang says the researchers discovered a new and successful transfer mechanism in an engineered structure nearly invisible to the human eye.

Titanium dioxide has played a key role in early water-splitting research because of its prowess as a catalyst. However, its light absorption is confined to ultraviolet rays only and the material is also a relatively poor conductor.

Wang and his researchers started by growing a nanostructure made of titanium disilicide (TiSi2), a semiconductor capable of absorbing solar light and a material able to provide a sturdy structure with expanded surface area critical to absorbing photons. Still in need of its catalytic capabilities, titanium dioxide was used to coat the structure, Wang said.

The resulting net-like nanostructure effectively separated charges, collecting the electrons in the titanium disilicide core and transporting them away. The structure transferred positive charges to the titanium dioxide region of the material for chemical reactions. In water-splitting, these charges could potentially be used to generate hydrogen.

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu
http://pubs.acs.org/doi/abs/10.1021/ja808426h

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>