Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanoparticles could revolutionize therapeutic drug discovery

29.06.2009
A revolutionary new protein stabilisation technique has been developed by scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) which could lead to 30 per cent more proteins being available as potential targets for drug development - opening up exciting possibilities in drug discovery.

Understanding the structure of proteins is a vital first step in developing new drugs, but to date, drug development has been slowed because due to their instability, proteins are difficult to work with in lab conditions.

However, using nanoparticles, scientists from the Universities of Birmingham and Warwick have found a way to preserve membrane proteins intact, enabling detailed analysis of their structure and molecular functions.

These new findings, which have just been published online in the Journal of the American Chemical Society, will give scientists access to previously ignored proteins deemed too unstable to work with.

Professor Michael Overduin, from the University of Birmingham, who led the study, explained: "We have shown how a polymer can wrap around and preserve membrane proteins intact in stable nanoparticles. Membrane proteins are the most valuable but technically challenging targets for drug discovery. Finding a gentle solution that preserves their structure and activity, yet is robust enough for experimental interrogation, has eluded scientists for decades, but is now available."

Using a polymer - styrene maleic acid lipid particles (SMALPs), the researchers solubilised a pair of membrane proteins. They found that not only did the proteins maintain their folded structure, binding and enzyme activities in the SMALPs, but also that using the nanoparticles allowed them to be simply and rapidly used for virtually any laboratory analysis.

Advantages of SMALPs over traditional ways to solubilise proteins such as detergents include enhanced stability, activity and spectral quality of the protein membranes.

Dr Tim Dafforn who jointly ran the study, said: "In the past, studies have concentrated largely on soluble proteins as membrane proteins are so difficult to make. However, the discovery of the SAMLPs removes this barrier and opens up access to membrane proteins - this has exciting clinical implications as it may enable drug discovery on receptors that are currently too difficult to produce or study by current methods."

Commenting on the findings, BBSRC Chief Executive Professor Doug Kell, said: "The attrition rate in developing new drugs is phenomenal. Only a tiny fraction make it into the clinic to benefit patients. Research such as this that can help to increase the number of potential targets will mean a larger pipeline for scientists to develop new drugs from and, ultimately more, better drugs for patients. Fundamental bioscience working in coordination with medical research is vital to deliver new, effective drugs."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>