Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles help with malaria diagnosis – new rapid test in development

21.11.2017

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases. An early diagnosis is vital for the timely and right kind of therapy. There are five different types of parasites at the origin of the disease. Plasmodium falciparum is causing malaria tropica and it is particularly harmful for infants and pregnant women in the African sub-Saharan region.


Fluorescent nanoparticles, excited by UV light.

© Photo K. Dobberke für Fraunhofer ISC


The spectrometer shows the dye’s fluorescent signal in the excited state.

© Photo K. Selsam, Fraunhofer ISC

To diagnose malaria with conventional diagnostic tools and to identify the parasite causing the infection takes experienced and well-trained personnel and a well-equipped laboratory. Both are scarce in Africa or even anywhere else outside specialized health care centers.

That is the reason why the NanoFRET project partners come together to develop the whole blood rapid diagnostic test to detect just this special type of parasite. Funding is granted by the German Federal Ministry of Education and Research (BMBF) within the framework of the VIP+ program (“Validation of the innovation potential of scientific research”).

In the body, infectious germs produce large amounts of specific proteins that accumulate in the blood. These proteins will be detected by a new tool developed by the project consortium led by the project coordinator Dr. Rolf Fendel (University of Tübingen). At the Fraunhofer IME, the team around Dr. Torsten Klockenbring sets out to develop antibodies able to identify proteins from the malaria parasite. These antibodies are coupled to novel fluorescent nanoparticles, which Dr. Sofia Dembski and her “Theranostik” team – part of the Translational Center Regenerative Therapies –developed at the Fraunhofer ISC.

The detection of the pathogen in a blood sample will be based on a special technique (time-resolved fluorescence resonance energy transfer (TR-FRET) in combination with the antibodies and the nanoparticles.

However, there is one challenge to overcome: The fluorescent properties of the nanoparticles have to be adapted so that the autofluorescence of blood can not affect the result.

Testing will take place with samples from malaria patients and a non-infected control group. Samples will be gathered, characterized and used to define the test parameters. The study will be performed by Dr. Andrea Kreidenweiss from the Institute of Tropical Medicine (University of Tübingen) at the Centre de Recherches Médicales de Lambaréné (CERMEL) located in Gabon, a collaboration partner of long standing.

In a next step upon establishing a reliable method, it will be tested in a diagnostic study at the CERMEL. The evaluation will consider sensitivity, specificity, and practicability under real conditions. If the test proves to be suitable, the project partners will design a prototype kit. The test kit must be producible at low cost and should enable an early diagnosis with malaria tropica.

The project is planned to be completed by late 2019. If successful, the project partners will adapt the test method to other infectious diseases and then find industry partners to develop the next generation of rapid diagnostic tools.

Project partners:
Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
Institute of Tropical Medicine at the University of Tübingen, Germany
Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.partikel.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>