Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause for nanoparticle size distribution elucidated

14.06.2013
Chemists and physicists at the Max Planck Institute for Polymer Research have been able to rule out a general assumption about the size distribution of nanoparticles.

When buying shoes it does not matter how good-looking the shoes might be if the size does not fit. This is similar with nanoparticles, which are made by the so-called emulsion-solvent evaporation process.

This process allows for the production of nanoparticles with high purity. Nevertheless they can still be improved: so far, their size distribution cannot be fully controlled. However, a defined size is of prime importance for future applications, whether it is for drug delivery or for intelligent coatings.

An interdisciplinary and international research collaboration at the Max Planck Institute for Polymer Research in Mainz was able to rule out coalescence as reason for the borad nanoparticle size distribution. Coalescence describes the tendency of colloidal droplets to melt together.

For the first time, Daniel Crespy, who is group leader in the department of Katharina Landfester, was able to prove that the coalescence between droplets during the process is not significantly responsible for the broad size distribution of the particles.

“This study elucidates the mechanism of a common process used for the preparation of nanoparticles,“ says Daniel Crespy about his research results.

The chemist labeled the original materials prior to the preparation of the nanoparticles. Some polymers were labeled with red and others with blue dyes. During the synthesis, the polymers and a solventwere emulsified in water. After the evaporation of the solvent, solid nanoparticles are obtained. This is a common method to produce all types of nanoparticles. Crespy’s trick: Upon adding both red- and blue-labeled polymers to the solvent, nanoparticles with both colors were obtained. The so-called negative control shows that if red and blue particles are mixed, no aggregation occurs because species with both dyes were not detected.

What happens if a red emulsion from polymer and solvent is mixed with a blue emulsion? Less than every twelfth particle –around 8 percent – were labeled with both red and blue dyes, which means that coalescence does not play a significant role in the process.
For the first time, the scientists were able to directly quantify the occurrence of coalescence. Together with Kaloian Koynov, who is physicist and expert for spectroscopic methods at the MPI-P, Crespy could monitor the coalescence of nanometer sized droplets by fluorescence correlation spectroscopy.

The experimental results were finally confirmed by simulations based on Monte-Carlo algorithms performed by Davide Donadio, group leader of a Max Planck Research Group. Thanks to this study, the reason for the broad size distribution could be attributed to the process itself.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/177319/PM6-13eng
- Website of the MPI for Polymer Research with pressrelease and aditional information
http://onlinelibrary.wiley.com/doi/10.1002/smll.201300372/abstract
- the publication in SMALL Vol.9 Issue 11

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de/177319/PM6-13eng

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>