Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NanoEDGE: Nano-based wearable electronics for mental disorder diagnosis and functional restoration


NanoEDGE, coordinated by the Fraunhofer Institute for Biomedical Engineering IBMT, is an interdisciplinary research project aiming at converging production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization, state-of-the-art engineering, and neuroscience to pave the way for the production of multi-level sensors that can rigorously enhance the performance of established monitoring methods like electroencephalography (EEG) and electromyography (EMG).

Electrodes are the core element of monitoring systems. Today's electrodes for detecting electrical muscle signals (EMG) or neuronal signals (EEG) are made of metal and provided with a gel layer. In long-term measurements, the gel dries and prevents reliable measurement on the patient. Besides the demand for electrical conductivity and direct contact to the skin, electrodes have to fulfil further requirements like biocompatibility, low contact resistance and high ability to adopt to the contour of the skin. These requirements can be fulfilled by printed electrodes made of graphene nanomaterials. However, hardly any graphene inks suitable for inkjet printing are available on the market and thus, industrial scale printing processes for these inks are also lacking.

Printed test electrodes.

Fraunhofer IBMT.

Graphene nanoparticle ink for inkjet printing

The NanoEDGE BMBF-Project, coordinated by the Fraunhofer Institute for Biomedical Engineering IBMT, aims at the development of an ink from graphene nanoparticles for inkjet printing and a scalable printing process as well as a resource-efficient process chain for the production of electrodes for direct skin contact. The development of a graphene-based ink is based on a commercial graphene ink. Ink modification was necessary to make it printable. Ethanol is added to avoid bubbles and to decrease the surface tension of the ink. Carbon nanoparticles are added to improve abrasion resistance of printed structures. A surfactant is added to improve printability and to increase the conductivity and surface smoothness of printed structures.

The skin electrode fabrication consists of conducting ink printing on soft material followed by blade cutting and lamination process of an adhesive passivation layer. The thickness of each of the components (conducting ink, soft support and passivation layers) determines the electrode coupling with the skin and therefore the signal-to-noise-ratio that can be achieved. For EEG applications, further optimization of these layers, if needed, can be achieved by reducing thickness and rigidity. Such ultra-thin electrodes combined with low-cost skin electronics will form a new generation of wearable sensors. With these sensors, the sophisticated detection of biological signals that are indicative for mental state, like neural, physiological and muscle signals, will allow for a more comprehensive portraying of mental processes, thus considerably improving mental disorder diagnosis and functional restoration.

The printing process is a two-step process: Firstly, tracks and contact pads are printed by using a silver ink. Secondly, electrodes are printed by using the modified graphene ink. An inkjet printer with a 16-nozzles-printhead was used for optimization of the printing parameters. Further, suited pre- and post-processing processes and parameters were developed. In a second step, the printing process will be transferred to an inkjet system suited for mass fabrication.

Wearable electronics

The wearable electronics is based on the BIOPOT of SensoMedical Labs LTD. The BIOPOT is a wireless bioimpedance and biopotential amplifier with a data transmission and data acquisition device that is used as a platform for product development in neurotechnology. It is a small size and low-profile wearable with customizable form factor and allows for days of activity monitoring. It uses latest Bluetooth low-energy 5.0 technology for data transmission and has on-board data buffer. It is also designed as a patch device for data acquisition. It is available in 8 or 19 channels options and can be configured for either EEG, EMG or other biopotential readings.

Enhancing performance and processes

The interdisciplinary approach of the NanoEDGE research project aims to converge the production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization, state-of-the-art engineering, and neuroscience. Thus will improve the production of multi-level sensors and enhance the performance of monitoring methods like EEG and EMG. State-of-the-art skin electronics will be enhanced by combining the printed electrodes with advanced electronics design of wearable electronics and wireless signal transmission. Further, NanoEDGE will develop resource-efficient production technologies and scalable processes for small scale and high-throughput electrode manufacturing and functionalization. To this end, laboratory scale processes for fabrication and functionalization of carbon nanomaterial-based electrodes available within the project consortium will be combined with the expertise in development of inkjet printers and inkjet printing technology. This combination of expertise will lead to new production processes and process chains and simplify usability and decrease costs.

Mental disorder diagnosis and functional restoration

The sensors developed within NanoEDGE can be used for the sophisticated detection of signals that are indicative for mental state, like neural, physiological and muscle signals. This will allow for a more comprehensive portraying of mental processes, thus considerably improving mental disorder diagnosis and functional restoration. Specifically, the project will target the testing of the novel and low-cost skin electronics technology for EEG based neurofeedback systems towards implementation in mental disorder diagnosis and mental function restoration. As such, NanoEDGE target some of the most pressing economic and societal challenges – the reduction of costs for treatment of mental disorders.

Bilateral project

NanoEDGE is a joint R&D project comprising participants from Germany and Israel. With the promotion of joint German-Israeli research projects in applied nanotechnology, new impulses are to be set which contribute to the intensification and stabilization of bilateral relations.

This project is funded by the German Federal Ministry of Education and Research (BMBF) within the Framework Concept "Innovations for the production, service and work of tomorrow" (funding number 02P17W000) and managed by the Project Management Agency Karlsruhe (PTKA). Furthermore, this project is funded by the Israel Innovation Authority.


Fraunhofer-Institute for Biomedical Engineering IBMT, Sulzbach, Germany
Principal investigator: Dr. Thomas Velten (Head of Department Biomedical Microsystems) (Co-ordination)

Notion Systems GmbH, Schwetzingen, Germany
Principal investigator: Dr. David Volk (Director New Applications)

Tel Aviv University, Tel Aviv, Israel
Principal investigators: Prof. Yael Hanein (Faculty of Engineering), Prof. Talma Hendler (Faculty of Medicine, Faculty of Social Science, Sagol School of Neuroscience)

Sensomedical Labs LTD., Nazareth, Israel
Principal investigator: Maroun Farah (CEO), Luai Asfour (HW and Projects Manager).

Wissenschaftliche Ansprechpartner:

Dr. Thomas Velten
Head of Department Biomedical Microsystems
Fraunhofer Institute for Biomedical Engineering IBMT
Joseph-von-Fraunhofer-Weg 1
66280 Sulzbach, Germany
Tel: +49 6897 9071 450

Weitere Informationen:

Dipl.-Phys. Annette Maurer-von der Gathen | Fraunhofer-Institut für Biomedizinische Technik IBMT

More articles from Life Sciences:

nachricht Strong evidence – Essential regulatory gene for the formation of heart valves discovered
03.08.2020 | Universität Potsdam

nachricht Scientists find new way to kill tuberculosis
31.07.2020 | Durham University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

Latest News

Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites

03.08.2020 | Physics and Astronomy

Improving the monitoring of ship emissions

03.08.2020 | Ecology, The Environment and Conservation

Time To Say Goodbye: The MOSAiC floe’s days are numbered

31.07.2020 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>