NanoEDGE: Nano-based wearable electronics for mental disorder diagnosis and functional restoration

Printed test electrodes. Fraunhofer IBMT.

Electrodes are the core element of monitoring systems. Today's electrodes for detecting electrical muscle signals (EMG) or neuronal signals (EEG) are made of metal and provided with a gel layer. In long-term measurements, the gel dries and prevents reliable measurement on the patient. Besides the demand for electrical conductivity and direct contact to the skin, electrodes have to fulfil further requirements like biocompatibility, low contact resistance and high ability to adopt to the contour of the skin. These requirements can be fulfilled by printed electrodes made of graphene nanomaterials. However, hardly any graphene inks suitable for inkjet printing are available on the market and thus, industrial scale printing processes for these inks are also lacking.

Graphene nanoparticle ink for inkjet printing

The NanoEDGE BMBF-Project, coordinated by the Fraunhofer Institute for Biomedical Engineering IBMT, aims at the development of an ink from graphene nanoparticles for inkjet printing and a scalable printing process as well as a resource-efficient process chain for the production of electrodes for direct skin contact. The development of a graphene-based ink is based on a commercial graphene ink. Ink modification was necessary to make it printable. Ethanol is added to avoid bubbles and to decrease the surface tension of the ink. Carbon nanoparticles are added to improve abrasion resistance of printed structures. A surfactant is added to improve printability and to increase the conductivity and surface smoothness of printed structures.

The skin electrode fabrication consists of conducting ink printing on soft material followed by blade cutting and lamination process of an adhesive passivation layer. The thickness of each of the components (conducting ink, soft support and passivation layers) determines the electrode coupling with the skin and therefore the signal-to-noise-ratio that can be achieved. For EEG applications, further optimization of these layers, if needed, can be achieved by reducing thickness and rigidity. Such ultra-thin electrodes combined with low-cost skin electronics will form a new generation of wearable sensors. With these sensors, the sophisticated detection of biological signals that are indicative for mental state, like neural, physiological and muscle signals, will allow for a more comprehensive portraying of mental processes, thus considerably improving mental disorder diagnosis and functional restoration.

The printing process is a two-step process: Firstly, tracks and contact pads are printed by using a silver ink. Secondly, electrodes are printed by using the modified graphene ink. An inkjet printer with a 16-nozzles-printhead was used for optimization of the printing parameters. Further, suited pre- and post-processing processes and parameters were developed. In a second step, the printing process will be transferred to an inkjet system suited for mass fabrication.

Wearable electronics

The wearable electronics is based on the BIOPOT of SensoMedical Labs LTD. The BIOPOT is a wireless bioimpedance and biopotential amplifier with a data transmission and data acquisition device that is used as a platform for product development in neurotechnology. It is a small size and low-profile wearable with customizable form factor and allows for days of activity monitoring. It uses latest Bluetooth low-energy 5.0 technology for data transmission and has on-board data buffer. It is also designed as a patch device for data acquisition. It is available in 8 or 19 channels options and can be configured for either EEG, EMG or other biopotential readings.

Enhancing performance and processes

The interdisciplinary approach of the NanoEDGE research project aims to converge the production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization, state-of-the-art engineering, and neuroscience. Thus will improve the production of multi-level sensors and enhance the performance of monitoring methods like EEG and EMG. State-of-the-art skin electronics will be enhanced by combining the printed electrodes with advanced electronics design of wearable electronics and wireless signal transmission. Further, NanoEDGE will develop resource-efficient production technologies and scalable processes for small scale and high-throughput electrode manufacturing and functionalization. To this end, laboratory scale processes for fabrication and functionalization of carbon nanomaterial-based electrodes available within the project consortium will be combined with the expertise in development of inkjet printers and inkjet printing technology. This combination of expertise will lead to new production processes and process chains and simplify usability and decrease costs.

Mental disorder diagnosis and functional restoration

The sensors developed within NanoEDGE can be used for the sophisticated detection of signals that are indicative for mental state, like neural, physiological and muscle signals. This will allow for a more comprehensive portraying of mental processes, thus considerably improving mental disorder diagnosis and functional restoration. Specifically, the project will target the testing of the novel and low-cost skin electronics technology for EEG based neurofeedback systems towards implementation in mental disorder diagnosis and mental function restoration. As such, NanoEDGE target some of the most pressing economic and societal challenges – the reduction of costs for treatment of mental disorders.

Bilateral project

NanoEDGE is a joint R&D project comprising participants from Germany and Israel. With the promotion of joint German-Israeli research projects in applied nanotechnology, new impulses are to be set which contribute to the intensification and stabilization of bilateral relations.

This project is funded by the German Federal Ministry of Education and Research (BMBF) within the Framework Concept “Innovations for the production, service and work of tomorrow” (funding number 02P17W000) and managed by the Project Management Agency Karlsruhe (PTKA). Furthermore, this project is funded by the Israel Innovation Authority.


Consortium

Fraunhofer-Institute for Biomedical Engineering IBMT, Sulzbach, Germany
Principal investigator: Dr. Thomas Velten (Head of Department Biomedical Microsystems) (Co-ordination)

Notion Systems GmbH, Schwetzingen, Germany
Principal investigator: Dr. David Volk (Director New Applications)

Tel Aviv University, Tel Aviv, Israel
Principal investigators: Prof. Yael Hanein (Faculty of Engineering), Prof. Talma Hendler (Faculty of Medicine, Faculty of Social Science, Sagol School of Neuroscience)

Sensomedical Labs LTD., Nazareth, Israel
Principal investigator: Maroun Farah (CEO), Luai Asfour (HW and Projects Manager).

Dr. Thomas Velten
Head of Department Biomedical Microsystems
Fraunhofer Institute for Biomedical Engineering IBMT
Joseph-von-Fraunhofer-Weg 1
66280 Sulzbach, Germany
Tel: +49 6897 9071 450
Email: thomas.velten@ibmt.fraunhofer.de
https://www.ibmt.fraunhofer.de

https://www.ibmt.fraunhofer.de/en.html
https://www.ibmt.fraunhofer.de/en/ibmt-core-competences/ibmt-biomedical-engineer…

Media Contact

Dipl.-Phys. Annette Maurer-von der Gathen Fraunhofer-Institut für Biomedizinische Technik IBMT

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors