Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NanoEDGE: Nano-based wearable electronics for mental disorder diagnosis and functional restoration

26.11.2019

NanoEDGE, coordinated by the Fraunhofer Institute for Biomedical Engineering IBMT, is an interdisciplinary research project aiming at converging production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization, state-of-the-art engineering, and neuroscience to pave the way for the production of multi-level sensors that can rigorously enhance the performance of established monitoring methods like electroencephalography (EEG) and electromyography (EMG).

Electrodes are the core element of monitoring systems. Today's electrodes for detecting electrical muscle signals (EMG) or neuronal signals (EEG) are made of metal and provided with a gel layer. In long-term measurements, the gel dries and prevents reliable measurement on the patient. Besides the demand for electrical conductivity and direct contact to the skin, electrodes have to fulfil further requirements like biocompatibility, low contact resistance and high ability to adopt to the contour of the skin. These requirements can be fulfilled by printed electrodes made of graphene nanomaterials. However, hardly any graphene inks suitable for inkjet printing are available on the market and thus, industrial scale printing processes for these inks are also lacking.


Printed test electrodes.

Fraunhofer IBMT.

Graphene nanoparticle ink for inkjet printing

The NanoEDGE BMBF-Project, coordinated by the Fraunhofer Institute for Biomedical Engineering IBMT, aims at the development of an ink from graphene nanoparticles for inkjet printing and a scalable printing process as well as a resource-efficient process chain for the production of electrodes for direct skin contact. The development of a graphene-based ink is based on a commercial graphene ink. Ink modification was necessary to make it printable. Ethanol is added to avoid bubbles and to decrease the surface tension of the ink. Carbon nanoparticles are added to improve abrasion resistance of printed structures. A surfactant is added to improve printability and to increase the conductivity and surface smoothness of printed structures.

The skin electrode fabrication consists of conducting ink printing on soft material followed by blade cutting and lamination process of an adhesive passivation layer. The thickness of each of the components (conducting ink, soft support and passivation layers) determines the electrode coupling with the skin and therefore the signal-to-noise-ratio that can be achieved. For EEG applications, further optimization of these layers, if needed, can be achieved by reducing thickness and rigidity. Such ultra-thin electrodes combined with low-cost skin electronics will form a new generation of wearable sensors. With these sensors, the sophisticated detection of biological signals that are indicative for mental state, like neural, physiological and muscle signals, will allow for a more comprehensive portraying of mental processes, thus considerably improving mental disorder diagnosis and functional restoration.

The printing process is a two-step process: Firstly, tracks and contact pads are printed by using a silver ink. Secondly, electrodes are printed by using the modified graphene ink. An inkjet printer with a 16-nozzles-printhead was used for optimization of the printing parameters. Further, suited pre- and post-processing processes and parameters were developed. In a second step, the printing process will be transferred to an inkjet system suited for mass fabrication.

Wearable electronics

The wearable electronics is based on the BIOPOT of SensoMedical Labs LTD. The BIOPOT is a wireless bioimpedance and biopotential amplifier with a data transmission and data acquisition device that is used as a platform for product development in neurotechnology. It is a small size and low-profile wearable with customizable form factor and allows for days of activity monitoring. It uses latest Bluetooth low-energy 5.0 technology for data transmission and has on-board data buffer. It is also designed as a patch device for data acquisition. It is available in 8 or 19 channels options and can be configured for either EEG, EMG or other biopotential readings.

Enhancing performance and processes

The interdisciplinary approach of the NanoEDGE research project aims to converge the production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization, state-of-the-art engineering, and neuroscience. Thus will improve the production of multi-level sensors and enhance the performance of monitoring methods like EEG and EMG. State-of-the-art skin electronics will be enhanced by combining the printed electrodes with advanced electronics design of wearable electronics and wireless signal transmission. Further, NanoEDGE will develop resource-efficient production technologies and scalable processes for small scale and high-throughput electrode manufacturing and functionalization. To this end, laboratory scale processes for fabrication and functionalization of carbon nanomaterial-based electrodes available within the project consortium will be combined with the expertise in development of inkjet printers and inkjet printing technology. This combination of expertise will lead to new production processes and process chains and simplify usability and decrease costs.

Mental disorder diagnosis and functional restoration

The sensors developed within NanoEDGE can be used for the sophisticated detection of signals that are indicative for mental state, like neural, physiological and muscle signals. This will allow for a more comprehensive portraying of mental processes, thus considerably improving mental disorder diagnosis and functional restoration. Specifically, the project will target the testing of the novel and low-cost skin electronics technology for EEG based neurofeedback systems towards implementation in mental disorder diagnosis and mental function restoration. As such, NanoEDGE target some of the most pressing economic and societal challenges – the reduction of costs for treatment of mental disorders.

Bilateral project

NanoEDGE is a joint R&D project comprising participants from Germany and Israel. With the promotion of joint German-Israeli research projects in applied nanotechnology, new impulses are to be set which contribute to the intensification and stabilization of bilateral relations.

This project is funded by the German Federal Ministry of Education and Research (BMBF) within the Framework Concept "Innovations for the production, service and work of tomorrow" (funding number 02P17W000) and managed by the Project Management Agency Karlsruhe (PTKA). Furthermore, this project is funded by the Israel Innovation Authority.


Consortium

Fraunhofer-Institute for Biomedical Engineering IBMT, Sulzbach, Germany
Principal investigator: Dr. Thomas Velten (Head of Department Biomedical Microsystems) (Co-ordination)

Notion Systems GmbH, Schwetzingen, Germany
Principal investigator: Dr. David Volk (Director New Applications)

Tel Aviv University, Tel Aviv, Israel
Principal investigators: Prof. Yael Hanein (Faculty of Engineering), Prof. Talma Hendler (Faculty of Medicine, Faculty of Social Science, Sagol School of Neuroscience)

Sensomedical Labs LTD., Nazareth, Israel
Principal investigator: Maroun Farah (CEO), Luai Asfour (HW and Projects Manager).

Wissenschaftliche Ansprechpartner:

Dr. Thomas Velten
Head of Department Biomedical Microsystems
Fraunhofer Institute for Biomedical Engineering IBMT
Joseph-von-Fraunhofer-Weg 1
66280 Sulzbach, Germany
Tel: +49 6897 9071 450
Email: thomas.velten@ibmt.fraunhofer.de
https://www.ibmt.fraunhofer.de

Weitere Informationen:

https://www.ibmt.fraunhofer.de/en.html
https://www.ibmt.fraunhofer.de/en/ibmt-core-competences/ibmt-biomedical-engineer...

Dipl.-Phys. Annette Maurer-von der Gathen | Fraunhofer-Institut für Biomedizinische Technik IBMT

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>