Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanodomains Made Visible

30.04.2013
In dry conditions, certain areas of the plant cell membrane are subject to significant changes. For the first time, scientists have made these so-called nanodomains visible under the microscope, investigating how they changed.
Plants are generally firmly rooted in the ground so that they cannot just move to a different place when the conditions become too dry or uncomfortable in any other way. Therefore, they must be alert to environmental changes and react appropriately.

When the conditions are favorable, the root absorbs nutrients and life-sustaining water. Above the surface of the ground, the shoot adjusts to the current light conditions, performs photosynthesis and produces components for growth, development and reproduction.

Under stress, the plants switch over from this standard program to survival mode. For this purpose, they need the ability to sense stress factors – such as heat, drought or the presence of pathogens – and to take appropriate action. They are able to do this with the help of sensors, which are each connected to a specific network.

Interconnected platforms in the membranes

"According to current knowledge, the cell membranes contain numerous tiny platforms, where certain signaling proteins interact. To some extent, these platforms possess preset interconnections. Depending on the respective signal, they are then reconfigured," explains Dr. Ines Kreuzer, a plant biologist at the University of Würzburg. Because these membrane platforms are so tiny, they are also known as nanodomains.

Reconfiguration of the nanodomains observed

As reported in the journal PNAS, Kreuzer's study group showed for the first time that the components of the drought stress signaling pathway occupy such nanodomains. In cooperation with Professor Gregory Harms at Wilkes University in Pennsylvania (USA), they were also able to trace the change in the domain composition induced by the hormone abscisic acid (ABA) under the laser microscope.

The ABA hormone is used to communicate changes in the water status between different parts of the plant. In dry conditions, high ABA levels ensure that the plant reduces its loss of water to the minimum.

Several signaling proteins involved

The team of the young Würzburg researcher identified several signaling proteins in the nanodomains as main components of the ABA signaling pathway. Kreuzer: "We are talking about the ion channel SLAH3, which is activated by the protein kinase CPK21. This kinase is controlled by the protein phosphatase ABI1. As soon as the receptor recognizes the presence of the ABA hormone, it deactivates the phosphatase and sends out the kinase to activate the ion channel. The opening of the ion channel converts the 'water shortage' signal into a flow of ions – an electrical response, in other words."

Phosphatase as "doorkeeper"

In this process, the nanodomains are a kind of "meeting place", where the reactants are given the opportunity to meet. In the absence of the drought stress hormone ABA, the phosphatase ensures that the ion channel and the kinase are no longer allowed into the membrane domains – there is no cellular response. "The processing of the hormone signal is obviously regulated on the basis of the fact that certain proteins either have or don't have access to special membrane areas, in which mechanism the phosphatase seems to perform the function of a 'doorkeeper', as Kreuzer summarizes.

The next steps of the research

Further studies are intended to show how the process in the nanodomains impacts on the nucleus. It is conceivable that drought tolerance genes are activated there, ensuring the survival of the plant even when there is a shortage of water.

Ines Kreuzer and her study group conduct research at the Department of Botany I – Molecular Plant Physiology and Biophysics of the University of Würzburg, headed by Professor Rainer Hedrich. Their studies are funded by the German Research Foundation within the Research Training Group 1342 (Molecular and Functional Analysis of Lipid-Based Signal Transduction Systems).

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Fatih Demir, Claudia Horntrich, Jörg O. Blachutzik, Sönke Scherzer, Yvonne Reinders, Sylwia Kierszniowska, Waltraud X. Schulze, Gregory S. Harms, Rainer Hedrich, Dietmar Geiger, Ines Kreuzer, PNAS, April 29, 2013, doi 10.1073/pnas.1211667110

Contact persons

Dr. Ines Kreuzer, Department of Botany I – Molecular Plant Physiology and Biophysics, University of Würzburg, T +49 (0) 931 31-86103, ifuchs@botanik.uni-wuerzburg.de

Prof. Dr. Rainer Hedrich, Department of Botany I – Molecular Plant Physiology and Biophysics, University of Würzburg, T +49 (0) 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>