Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocarriers should cure grapevine trunk diseases

02.03.2018

The funding initiative “Experiment!” of the Volkswagen Foundation (VolkswagenStiftung) supports research at the Max Planck Institute (MPI) for Polymer Research about degradable nanocarriers for plant protection.

The Volkswagen Foundation (VolkswagenStiftung) has selected the interdisciplinary project “NanoProtect” of Dr. Frederik Wurm, head of the Functional Polymers research group at the Max Planck Institute (MPI) for Polymer Research in Mainz, Germany, for its funding initiative 'Experiment!'.


The NanoProtect project aims to find a cure for the grapevine trunk disease.

Copyright: Dr. Frederik Wurm

Wurm’s research is focussing on the design and development of degradable polymers and nanocarriers. “NanoProtect” is an innovative collaboration project together with biology partners to fight against plant diseases, which cannot be cured to date. The project is realized by an interdisciplinary consortium of three German institutes including the MPI for Polymer Research.

Medical drug delivery concept for plants

Nanocarrier-mediated drug delivery is already used for medical purposes such as cancer treatment, but not yet in plants. Wurm and his team aim to develop polymer nanocarriers to cure plant diseases, especially diseases in grapevine trunks.

“Polymer nanocarriers allow us to tailor the release of drugs inside of the wine plant, only if the plant is infected, similar to a vaccination for us”, said scientist Frederik Wurm. A novel approach for a targeted delivery of drugs and biological control agents in crop such as grapevine and apple are currently developed and tested.

The VW Foundation (VolkswagenStiftung) has selected the “NanoProtect” project from more than 500 projects. The research consortium has received funding of 120.000 euros. The consortium comprises the research teams of Dr. Frederik Wurm in the department of Professor Katharina Landfester at the MPI for Polymer Research, of Dr. Jochen Fischer at the Institute for Biotechnology und Dug Research gGmbH (IBWF) in Kaiserslautern, Germany, and of Dr. Andreas Kortekamp, Head of the Institute for Phytomedicine, State Education and Research Center of Viticulture, Horticulture and Rural Development (DLR) in Neustadt an der Weinstraße, Germany.

About the Max Planck Institute for Polymer Research

The Max Planck Institute for Polymer Research (MPI-P) ranks among the globally leading research centers in the field of polymer research since its foundation in 1984. The focus on soft materials and macromolecular materials has resulted in the worldwide unique position of the MPI-P and its research focus.

Fundamental polymers research on both production and characterization as well as analysis of physical and chemical properties are conducted by scientific collaborators from all over the world. Presently over 500 people are working at the MPI-P, the vast majority of whom are engaged in scientific research.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/home/en
http://www.Chemistry-is-Life.de
https://www.volkswagenstiftung.de/en.html

Kerstin Felix | Max-Planck-Institut für Polymerforschung

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>