Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole-rats may hold clues to pain relief

24.09.2012
Naked mole-rats evolved to thrive in an acidic environment that other mammals, including humans, would find intolerable. Researchers at the University of Illinois at Chicago report new findings as to how these rodents have adapted to this environment.

The study was published online this week on PLOS ONE.

In the tightly crowded burrows of the African naked mole-rats' world, carbon dioxide builds up to levels that would be toxic for other mammals, and the air becomes highly acidic. These animals freely tolerate these unpleasant conditions, says Thomas Park, professor of biological sciences at UIC and principal investigator of the study -- which may offer clues to relieving pain in other animals and humans.

Much of the lingering pain of an injury, for example, is caused by acidification of the injured tissue, Park said.

"Acidification is an unavoidable side-effect of injury," he said. "Studying an animal that feels no pain from an acidified environment should lead to new ways of alleviating pain in humans."

In the nose of a mammal, specialized nerve fibers are activated by acidic fumes, stimulating the trigeminal nucleus, a collection of nerves in the brainstem, which in turn elicits physiological and behavioral responses that protect the animal -- it will secrete mucus and rub its nose, for example, and withdraw or avoid the acidic fumes.

The researchers placed naked mole-rats in a system of cages in which some areas contained air with acidic fumes. The animals were allowed to roam freely, and the time they spent in each area was tracked. Their behavior was compared to laboratory rats, mice, and a closely related mole-rat species that likes to live in comfy conditions, as experimental controls.

The naked mole-rats spent as much time exposing themselves to acidic fumes as they spent in fume-free areas, Park said. Each control species avoided the fumes.

The researchers were able to quantify the physiologic response to exposure to acidic fumes by measuring a protein, c-Fos, an indirect marker of nerve activity that is often expressed when nerve cells fire. In naked mole-rats, no such activity was found in the trigeminal nucleus when stimulated. In rats and mice, however, the trigeminal nucleus was highly activated.

The naked mole-rats' tolerance of acidic fumes is consistent with their adaptation to living underground in chronically acidic conditions, Park said.

The study was supported by a grant from the National Science Foundation. Pamela LaVinka, graduate student in biological sciences at UIC, was first author on the study.

[Video link: http://youtu.be/jHm0jmg-sbc]

[Photos for download: http://newsphoto.lib.uic.edu/v/naked+mole-rats/]

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>