Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery solved: Tiny protein-activator responsible for brain cell damage in Huntington disease

08.06.2009
Johns Hopkins brain scientists have figured out why a faulty protein accumulates in cells everywhere in the bodies of people with Huntington's disease (HD), but only kills cells in the part of the brain that controls movement, causing negligible damage to tissues elsewhere.

The answer, reported this week in Science, lies in one tiny protein called "Rhes" that's found only in the part of the brain that controls movement. The findings, according to the Hopkins scientists, explain the unique pattern of brain damage in HD and its symptoms, as well as offer a strategy for new therapy.

HD itself is caused by a genetic defect that produces a mutant version of the protein "huntingtin" that gathers in all cells of the body, but only seems to affect the brain. Passed from parent to child through an alteration of a normal gene, HD over time causes irreversible uncontrolled movement, loss of intellectual function, emotional disturbances and death.

"It's always been a mystery why, if the protein made by the HD gene is seen in all cells of the body, only the brain, and only a particular part of the brain, the corpus striatum, deteriorates," says Solomon H. Snyder, M.D., professor of neuroscience at Johns Hopkins. "By finding the basic culprit, the potential is there to develop drugs that target it and either prevent symptoms or slow them down."

Curious about the huntingtin protein's striatal-specific effect, Snyder's research team, led by Srinivasa Subramaniam, Ph.D., a postdoctoral fellow, searched for proteins that interacted locally, specifically and exclusively with huntingtin in the corpus striatum, guessing that the molecular answer to the mystery most likely would be found there.

The protein Rhes caught their attention because they already were studying a related protein for other reasons. Rhes was known to be found almost exclusively in the corpus striatum.

Conducting tests using human and mouse cells, they found that Rhes interacted with both healthy and mutant versions of huntingtin protein, but bound much more strongly to mutant huntingtin, also known as mHtt.

"Touching or binding is one matter, but death is altogether another," said Snyder, so the next step was to see whether and how Rhes plus mHtt could kill brain cells in the corpus striatum.

Using human embryonic cells and brain cells taken from mice the researchers added different combinations of normal and mutant huntingtin and Rhes, and examined the cells over the next week to see if any cells died.

While each protein alone didn't change the number of cells in the dishes, when both mHtt and Rhes were present in the same cells, half the cells died within 48 hours.

"Here's the Rhes protein, we've known about it for years, nobody ever really knew what it did in the brain or anywhere else," says Snyder. "And it turns out it looks like the key to Huntington's disease."

Snyder's team then went on to tackle another mystery surrounding the disease, the solution to this one adding further evidence for the role Rhes plays in HD.

"We've known for a long time that abnormal huntingtin proteins aggregate and form clumps in all cells of the body, but the corpus striatum of HD patients seems to have fewer of these clumps than other brain regions or the rest of the body," says Subramaniam in describing the mystery. "This has led to much controversy: Are the clumps toxic, or is it the lack of clumps that's toxic to these brain cells?"

In their experiment, adding Rhes to cells with abnormal huntingtin led to fewer clumps, but the cells died. The results, says Subramaniam, suggest that Rhes might be responsible for unclumping mutant huntingtin protein and this somehow kills cells. "Since Rhes is highly found in the corpus striatum, clumping somehow protects cells in other tissues of the body from dying," says Subramaniam.

Subramaniam and the rest of Snyder's research team currently are exploring whether removing Rhes from mice with Huntington's disease can slow or stop brain cells from dying.

"Now that we've uncovered the role of Rhes, it's possible that drugs can be designed that specifically target Rhes to treat or even prevent the disease," says Snyder.

This study was funded by a U.S. Public Health Service grant and Research Scientist Award.

Authors on the paper are Srinivasa Subramaniam, Katherine Sixt, Roxanne Barrow and Solomon H. Snyder, all of Johns Hopkins.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://neuroscience.jhu.edu/
http://www.sciencemag.org/

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>