Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery solved: Tiny protein-activator responsible for brain cell damage in Huntington disease

08.06.2009
Johns Hopkins brain scientists have figured out why a faulty protein accumulates in cells everywhere in the bodies of people with Huntington's disease (HD), but only kills cells in the part of the brain that controls movement, causing negligible damage to tissues elsewhere.

The answer, reported this week in Science, lies in one tiny protein called "Rhes" that's found only in the part of the brain that controls movement. The findings, according to the Hopkins scientists, explain the unique pattern of brain damage in HD and its symptoms, as well as offer a strategy for new therapy.

HD itself is caused by a genetic defect that produces a mutant version of the protein "huntingtin" that gathers in all cells of the body, but only seems to affect the brain. Passed from parent to child through an alteration of a normal gene, HD over time causes irreversible uncontrolled movement, loss of intellectual function, emotional disturbances and death.

"It's always been a mystery why, if the protein made by the HD gene is seen in all cells of the body, only the brain, and only a particular part of the brain, the corpus striatum, deteriorates," says Solomon H. Snyder, M.D., professor of neuroscience at Johns Hopkins. "By finding the basic culprit, the potential is there to develop drugs that target it and either prevent symptoms or slow them down."

Curious about the huntingtin protein's striatal-specific effect, Snyder's research team, led by Srinivasa Subramaniam, Ph.D., a postdoctoral fellow, searched for proteins that interacted locally, specifically and exclusively with huntingtin in the corpus striatum, guessing that the molecular answer to the mystery most likely would be found there.

The protein Rhes caught their attention because they already were studying a related protein for other reasons. Rhes was known to be found almost exclusively in the corpus striatum.

Conducting tests using human and mouse cells, they found that Rhes interacted with both healthy and mutant versions of huntingtin protein, but bound much more strongly to mutant huntingtin, also known as mHtt.

"Touching or binding is one matter, but death is altogether another," said Snyder, so the next step was to see whether and how Rhes plus mHtt could kill brain cells in the corpus striatum.

Using human embryonic cells and brain cells taken from mice the researchers added different combinations of normal and mutant huntingtin and Rhes, and examined the cells over the next week to see if any cells died.

While each protein alone didn't change the number of cells in the dishes, when both mHtt and Rhes were present in the same cells, half the cells died within 48 hours.

"Here's the Rhes protein, we've known about it for years, nobody ever really knew what it did in the brain or anywhere else," says Snyder. "And it turns out it looks like the key to Huntington's disease."

Snyder's team then went on to tackle another mystery surrounding the disease, the solution to this one adding further evidence for the role Rhes plays in HD.

"We've known for a long time that abnormal huntingtin proteins aggregate and form clumps in all cells of the body, but the corpus striatum of HD patients seems to have fewer of these clumps than other brain regions or the rest of the body," says Subramaniam in describing the mystery. "This has led to much controversy: Are the clumps toxic, or is it the lack of clumps that's toxic to these brain cells?"

In their experiment, adding Rhes to cells with abnormal huntingtin led to fewer clumps, but the cells died. The results, says Subramaniam, suggest that Rhes might be responsible for unclumping mutant huntingtin protein and this somehow kills cells. "Since Rhes is highly found in the corpus striatum, clumping somehow protects cells in other tissues of the body from dying," says Subramaniam.

Subramaniam and the rest of Snyder's research team currently are exploring whether removing Rhes from mice with Huntington's disease can slow or stop brain cells from dying.

"Now that we've uncovered the role of Rhes, it's possible that drugs can be designed that specifically target Rhes to treat or even prevent the disease," says Snyder.

This study was funded by a U.S. Public Health Service grant and Research Scientist Award.

Authors on the paper are Srinivasa Subramaniam, Katherine Sixt, Roxanne Barrow and Solomon H. Snyder, all of Johns Hopkins.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://neuroscience.jhu.edu/
http://www.sciencemag.org/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>