Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation found in dachshund gene may help develop therapies for humans with blindness

11.08.2008
Cone-rod dystrophies (CRDs) are a group of eye diseases caused by progressive loss of the photoreceptor cells in the retina.

In a study published online in Genome Research (www.genome.org), researchers have identified a novel mutation in a gene associated with CRD in dogs, raising hopes that potential therapies can be developed for people suffering from these eye disorders.

CRD represents a heterogeneous set of disorders characterized by progressive loss of retinal cone function. As these photoreceptor cells allow us to see in bright light, loss of cones results in what is commonly known as dayblindness, and can advance to blindness altogether. Thus far, investigations into the genetic basis for autosomal recessively inherited cases of human CRD have turned up only a few genes associated with the disorder, therefore it is likely there are other genes associated with CRD not yet identified.

Eye disorders are one of the most frequently inherited disorders in dogs, however canine CRD is limited to only a few breeds. A gene mutation had previously been associated with CRD in the miniature long-haired dachshund, while a genetic basis for CRD in the standard wire-haired dachshund and the pit bull terrier remained unknown. In this study, scientists led by Dr. Frode Lingaas of the Norwegian School of Veterinary Science and Dr. Kerstin Lindblad-Toh of the Broad Institute of MIT and Harvard have identified a mutation in a novel gene for early-onset CRD in standard wire-haired dachshund by genome-wide association mapping of a dachshund family.

The genome-wide strategy utilized by Lingaas' group isolated a region on chromosome 5 associated with CRD in dachshund. A search for mutations of this area revealed that a portion of the nephronophthisis 4 (NPHP4) gene has been deleted and is likely responsible for recessively inherited CRD in the standard wire-haired dachshund. The finding is particularly interesting, as the human form of NPHP4 has been previously implicated in disease. "This gene has been associated with a combination of kidney and eye disease in human patients," explained Lingaas. "Here, we found a mutation that affects only the eyes, suggesting that this gene might be a candidate for human patients with eye disease only."

The researchers suggest that the protein coded for by the mutant form of NPHP4 may lack a domain that would normally interact with other proteins involved in eye function, yet still retain the region involved in kidney function. "The new information that the NPHP4 gene can be involved in eye diseases only can shed light on the etiology of some low-frequency eye diseases in people where similar mutations may be involved," Lindblad-Toh said.

Lingaas noted that identification of causal mutations for diseases has practical implications for dogs, as genetic tests could be implemented to avoid new cases of the disorder and reduce the frequency of the mutation in the population. Furthermore, this investigation of the genetic basis for CRD in dogs could facilitate the development of treatments for humans.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

Further reports about: CRD Cone-rod dystrophies Genetic Mutation NPHP4 dachshund nephronophthisis

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>