Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation discovery may improve treatment for rare brain tumor type

13.01.2014
Study findings could lead to targeted therapies for hard-to-treat craniopharyngiomas

Scientists have identified a mutated gene that causes a type of tenacious, benign brain tumor that can have devastating lifelong effects. Currently, the tumor can only be treated with challenging repeated surgeries and radiation.

The discovery, reported in Nature Genetics, is encouraging, because it may be possible to attack the tumors with targeted drugs already in use for other kinds of tumors, said the investigators from Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Massachusetts General Hospital, and the Broad Institute of MIT and Harvard.

The mutated gene, known as BRAF, was found in almost all samples of tumors called papillary craniopharyngiomas. This is one of two types of craniopharyngiomas—the other being adamantinomatous—that develop in the base of the brain near the pituitary gland, hypothalamus, and optic nerves. The papillary craniopharyngiomas occur mainly in adults; adamantinomatous tumors generally affect children.

The researchers identified a different mutant gene that drives the tumors in children. Drugs that target these adamantinomatous tumors are not yet clinically available, but may be in the future, said the researchers.

"From a clinical perspective, identifying the BRAF mutation in the papillary tumors is really wonderful, because we have drugs that get into the brain and inhibit this pathway," said Sandro Santagata, MD, PhD, a co-senior author of the paper. "Previously, there were no medical treatments—only surgery and radiation—and now we may be able to go from this discovery right to a well-established drug therapy." BRAF inhibitors are currently used in treating malignant melanoma when that mutation is present.

Priscilla Brastianos, MD, co-first author of the study, and Santagata said plans are underway to design a multicenter clinical trial to investigate the efficacy of a BRAF inhibitor in patients with papillary craniopharyngiomas.

Craniopharyngiomas occur in less than one in 100,000 people. They are slow-growing tumors that don't metastasize, but they can cause severe complications, including headaches, visual impairment, hormonal imbalances, obesity and short stature. Even with expert neurosurgery, it is difficult to completely remove the tumors without damaging normal structures, and the tumors often recur.

The investigators were surprised to find that the single mutated BRAF gene was the sole driver of 95 percent of the papillary craniopharyngiomas they analyzed with whole-exome DNA sequencing. "We were really surprised to find that something as simple as a BRAF mutation by itself, rather than multiple mutations, is what drives these tumors," said Santagata.

One scenario, should the inhibitors prove successful in halting or reversing growth of the tumors, would be to test the drugs preoperatively with the aim of shrinking the tumor so less radical surgery would be needed, said Santagata.

A different mutation, in a gene called CTNNB1, was identified as the principal abnormality in the pediatric tumors, according to the report. This mutation causes overactivity in the beta-catenin molecular growth-signaling pathway. Unlike with the BRAF mutation, drugs that inhibit the CTNNB1 abnormality have not yet reached the clinic, but several groups are working on them, Santagata said.

Santagata, a pathologist, is affiliated with Dana-Farber/Boston Children's, Brigham and Women's Hospital and Harvard Medical School (HMS). Co-senior authors of the study are Mark Kieran, MD, PhD, of Dana-Farber/Boston Children's and HMS; and Gad Getz, PhD, of the Broad Institute, Massachusetts General Hospital (MGH) and HMS.

The study has three co-first authors: Brastianos of MGH, Dana-Farber Cancer Institute, HMS and the Broad; Amaro Taylor-Weiner of the Broad; and Peter Manley, MD, of Dana-Farber/Boston Children's.

The research was supported by Pedals for Pediatrics and the Clark family.

The Dana-Farber/Boston Children's Cancer and Blood Disorders Center brings together two internationally known research and teaching institutions that have provided comprehensive care for pediatric oncology and hematology patients since 1947. The Harvard Medical School affiliates share a clinical staff that delivers inpatient care at Boston Children's Hospital and outpatient care at the Dana-Farber Cancer Institute's Jimmy Fund Clinic. Dana-Farber/Boston Children's brings the results of its pioneering research and clinical trials to patients' bedsides through five clinical centers: the Blood Disorders Center, the Brain Tumor Center, the Hematologic Malignancies Center, the Solid Tumors Center, and the Stem Cell Transplant Center.

Irene Sege | EurekAlert!
Further information:
http://www.dana-farber.org/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>