Mutation causing wrong-way plumbing explains 1 type of blue-baby syndrome

Total anomalous pulmonary venous connection (TAPVC), one type of “blue baby” syndrome, is a potentially deadly congenital disorder that occurs when pulmonary veins don't connect normally to the left atrium of the heart. This results in poorly oxygenated blood throughout the body, and TAPVC babies are born cyanotic – blue-colored – from lack of oxygen.

TAPVC is usually detected in newborns when babies are blue despite breathing normally. Life-threatening forms of the disorder are rare – about 1 in 15,000 live births. A closely related, but milder disorder, partial anomalous pulmonary venous connection (PAPVC), in which only some of the pulmonary veins go awry, is found in as many as 1 in 150 individuals.

Now, researchers have found that a mutation in a key molecule active during embryonic development makes the plumbing between the immature heart and lungs short-circuit, disrupting the delivery of oxygenated blood to the brain and other organs. The mutation ultimately causes blood to flow in circles from the lungs to the heart's right side and back to the lungs.

Senior author Jonathan A. Epstein, MD, chair of the Department of Cell and Developmental Biology, at the Perelman School of Medicine, University of Pennsylvania, and colleagues from The Children's Hospital of Philadelphia, describe in Nature Medicine, that a molecule called Semaphorin 3d (Sema3d) guides the development of endothelial cells and is crucial for normal development of pulmonary veins. It is mutations in Sema3d that cause embryonic blood vessels to hook up in the wrong way.

Epstein is also the William Wikoff Smith professor and scientific director of the Penn Cardiovascular Institute. Karl Degenhardt, MD, PhD, assistant professor at The Children's Hospital of Philadelphia; Manvendra K. Singh, PhD, an instructor of Cell and Developmental Biology at Penn; and Haig Aghajanian, a graduate student in Cell and Molecular Biology at Penn are the co-first authors on the paper.

Physicians thought that TAPVC occurred when the precursor cells of the pulmonary vein failed to form at the proper location on the embryonic heart atrium. However, analysis of Sema3d mutant embryos showed that TAPVC occurs despite normal formation of embryonic precursor veins.

In these embryos, the maturing pulmonary venous plexus, a tangle of vessels, does not connect just with properly formed precursor veins. In the absence of the Sema3d guiding signal, endothelial tubes form in a region that is not normally full of vessels, resulting in aberrant connections. Normally, Sema3d provides a repulsive cue to endothelial cells in this area, establishing a boundary.

Sequencing of Sema3d in individuals affected with anomalous pulmonary veins identified a point mutation that adversely affects Sema3d function in humans. The mutation causes Sema3d to lose its normal ability to repel certain types of cells to be able to guide other cells to grow in the correct place. When Sema3d can't keep developing veins in their proper space, the plumbing goes haywire.

Since it's already known that semaphorins guide blood vessels and axons to grow properly, the authors surmise that Sema3d could be used for anti-angiogenesis therapies for cancer, to treat diabetic retinopathy, or to help to grow new blood vessels to repair damaged hearts or other organs.

Daniele Massera, Qiaohong Wang, Jun Li, Li Li, Connie Choi, Amanda D. Yzaguirre, Lauren J. Francey, Emily Gallant, Ian D. Krantz, and Peter J. Gruber are co-authors.

This work was supported by the National Institutes of Health (NIH 5K12HD043245-07, NIH T32 GM07229, and NIH UO1 HL100405).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania — recognized as one of the nation's top “Honor Roll” hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region. Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Media Contact

Karen Kreeger EurekAlert!

More Information:

http://www.uphs.upenn.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors