Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant flies shed light on inherited intellectual disability

05.07.2011
Clumsy fruit flies with poor posture are helping an international team of scientists understand inherited intellectual disability in humans – and vice versa.

The flies can't hold their wings tightly against their bodies, and have trouble with flying and climbing behaviors, because they have mutations in a gene called dNab2. In humans, mutations in the same gene (with a clunkier name, ZC3H14) have been found to cause intellectual disability (ID) in studies of some Iranian families. ID describes the condition that was previously called mental retardation.

The protein encoded by Nab2/ZC3H14 appears to be part of a group of proteins, including the one disrupted in fragile X syndrome, that regulate brain cell function by binding RNA.

Cross-species comparisons of Nab2/ZC3H14's function are shedding light on how brain cells regulate genes by controlling the length of their RNA "tails." The results are published online in this week's Proceedings of the National Academy of Sciences Early Edition.

This unusual collaboration brought together investigators from Emory University School of Medicine in Atlanta, the Max Planck Institute for Molecular Genetics in Berlin and the University of Social Welfare and Rehabilitation Sciences in Tehran.

The paper's co-first authors are Emory graduate student Chang Hui Pak and Max Planck postdoc Masoud Garshasbi, with senior authors Andreas Kuss, PhD, group leader at the Max Planck Institute, and Anita Corbett, PhD, professor of biochemistry and Ken Moberg, PhD, assistant professor of cell biology at Emory University School of Medicine.

At Emory, Corbett had studied Nab2 in yeast since the 1990s. Her laboratory teamed up with Moberg to look at the function of the gene in fruit flies. Pak, a student in both Corbett's and Moberg's labs, generated flies with mutations in dNab2.

What made those flies easy to spot, next to regular flies, was that the mutant flies kept their wings stretched out. Healthy flies hold their wings folded together over their bodies. Several mutations that affect nerve or muscle development display this "wings held out" effect in flies, Moberg says.

"At this point, we didn't know if it was a problem with the muscles connected to the wings, or with the nerve networks that control those muscles," he says.

Unexpectedly, Corbett received an e-mail in 2009 providing a flash of insight. The Berlin/Tehran team had been studying families in Iran in which cousins marry, looking for genetic mutations that lead to intellectual disability.

"It has been more straightforward to find mutations that cause ID along the X chromosome, because they show up easily in boys – and they don't need to have inherit the defective genes from both parents," Moberg says. "Studying these families with blood-related parents is a way to explore new ground and learn more about genes on other chromosomes that can be linked to ID."

The Berlin/Tehran team had found that a mutation in the ZC3H14 gene showed up in two independent family trees affected by intellectual disability. Affected individuals can be male or female and have "non-syndromic" intellectual disability, meaning that they don't have altered anatomical development or other features such as autism.

The mutations in ZC3H14 in affected individuals don't completely wipe out production of the protein. This may be why the consequences of the human mutation aren't completely fatal. Puzzlingly, one form of the protein enriched in the brain is still there, but the forms of the protein found all over the body are gone.

"We suspect that the only reason these people are walking around is because that one isoform is still there," Moberg says.

The discovery of the fly/human link has led to a bundle of new questions. The protein Nab2/ZC3H14 binds "poly-A tails" (flags the cell puts on RNA molecules when they're ready to be decoded into protein). The protein restricts the length of the tails, which may be more important for some genes than others, Moberg says.

At Emory, scientists are studying the mutant flies to figure out more precisely what's wrong with them: which cells in the fly's brain are affected and what genes and processes go awry in these cells. Although the overall structure of the brain and nervous system in mutant flies looks OK, preliminary evidence suggests the mutation alters structures in the brain important for learning and memory. Collaborator Gary Bassell is collaborating with Corbett to engineer mice lacking the ZC3H14 gene.

"Although mice may better reflect the human situation, exploring the function of Nab2 in flies first allowed us to be quicker and nimbler in designing experiments," Moberg says.

The Berlin/Tehran team is now examining how common mutations in ZC3H14 are in population groups outside Iran, and whether it can account for other forms of intellectual disability.

The research was supported by the National Institutes of Health, the German Federal Ministry of Education and Research, the Max Planck Innovation Fund and the Iranian National Science Foundation.

Reference: CH Pak et al Mutation of the conserved polyadenosine RNA binding protein ZC3H14/dNab2, impairs neural function in Drosophila and humans. PNAS Early Edition (2011).

Writer: Quinn Eastman

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Antibiotics: New substances break bacterial resistance
12.11.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht How the Zika virus can spread
11.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>