Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018

Drexel researchers find optimal polymer coating to preserve nanoparticles

For a number of innovative and life-saving medical treatments, from organ replacements and skin grafts to cancer therapy and surgery, success often depends on slipping past or fending off the body's immune system. In a recent development, aimed at aiding cancer detection and treatment, Drexel University researchers might have found the ideal surface texture for helping microscopic, medical helpers to survive in the bloodstream without being screened out by the body's natural defense mechanisms.


Drexel University researchers have discovered the optimal polymer coating to help cancer-fighting nanoparticles make their way to tumors. A thick polymer brush layer combined with a mushroom-like polymer layer prevents the nanoparticles from being removed by the liver or immune system.

Credit: Drexel University

The researchers, led by Hao Cheng, PhD, an assistant professor in the Materials Science and Engineering Department of Drexel's College of Engineering, have been studying how to prolong the life of nanoparticles in the body.

These aptly named tiny organic molecules can be tailored to travel through the bloodstream, seek and penetrate cancerous tumors. With this ability, they've shown great promise, both as markers for tumors and tools for treating them. But at this point, a major limit on their effectiveness is how long they're able to remain in circulation - hence Cheng's pursuit.

"Most synthetic nanoparticles are quickly cleared in the bloodstream before reaching tumors. Short blood circulation time is one of the major barriers for nanoparticles in cancer therapy and some other biomedical applications," Cheng said. "Our group is developing a facile approach that dramatically extends nanoparticle circulation in the blood in order to improve their anti-tumor efficacy."

His latest discovery, published in the journal ACS Nano, shows that surface topography is the key to nanoparticle survival. Cheng's research group shows how polymer shells can be used to cloak nanoparticles in the bloodstream from uptake by the immune system and liver - the body's primary screeners for removing harmful intruders from circulation.

Getting 'Flagged'

As soon as nanoparticles enter the bloodstream, plasma proteins immediately attach onto their surfaces, a process called "protein adsorption." Some of these adsorbed proteins behave like a marker to label nanoparticles as foreign bodies, telling the immune system to remove them.

Previously, scientists believed that once the nanoparticles were "protein tagged" macrophages, the gatekeeper cells of immune system, would assume primary responsibility for clearing them from the blood. But Cheng's research found that liver sinusoidal endothelial cells actually play an equally important role in scooping up bodily invaders.

"This was a somewhat surprising finding," Cheng said. "Macrophages are normally considered the major scavenger of nanoparticles in the blood. While liver sinusoidal endothelial cells express scavenger receptors, it was largely unknown that reducing their uptake of nanoparticles could have an even more dramatic effect than efforts to prevent uptake by microphages."

So to keep nanoparticles in circulation the researchers needed to develop a way to thwart both sets of cells.

Layering Up

The method currently used for keeping these cells at bay, is coating the nanoparticles with a polymer shell to reduce protein adsorption - thus preventing the particles from being targeted for removal.

Polyethylene glycol - PEG, for short - is the polymer widely used as the nanoparticle coating and one Cheng's lab has employed in its previous work developing coatings for nanoparticles that can penetrate solid tumors. Researchers have shown that deploying PEG in a dense, brush-like layer can repel proteins; and grafting it less densely, in a form where the polymer stands look more like mushrooms, can also prevent protein adsorption.

But the Drexel researchers discovered that combining the two types of layers creates a nanoparticle coating that can thwart both proteins and the immune system's "bouncer" cells.

"We found that it takes a mushroom on top of a brush to keep nanoparticles 'invisible' in the bloodstream," said Christopher Li, PhD, a professor in the College of Engineering and co-author of the paper whose work focuses on engineering soft materials, such as polymers. "Our hierarchal bi-layer approach is a clever way to combine the advantages of both the brush configuration, as well as low-density PEG layers that form mushrooms."

Staying in the Game

It turns out that with more space to spread out on a nanoparticle shell, PEG "mushrooms" wave like seaweed swinging in water, making nanoparticles difficult for macrophages and liver sinusoidal endothelial cells to scoop up. The dense inner layer of PEG brushes does its part to keep proteins away, thus making a formidable combination to prolong a nanoparticle's trip in the bloodstream.

"For the first time, we are showing that a dynamic surface structure of nanomaterials is important for their fate in vivo," said Hao Zhou, PhD, who was a doctoral student in Cheng's lab and the lead author of the paper.

With the hierarchal polymer layers cloaking the outside of nanoparticles, Cheng found that they can remain in the bloodstream up to 24 hours. This is a twofold increase over the best results in previous nanoparticle studies and it means that a greater number of particles would be able to reach their ultimate destination inside tumors.

"This discovery suggests that we have identified the optimal PEG configuration for coating nanoparticles," said Wilbur B. Bowne, MD, a cancer surgeon and professor in Drexel's College of Medicine, who contributed to the paper. "Prolonging the circulation time to 24 hours expands the possibilities for using nanoparticles in cancer therapy and diagnosis."

###

This research was funded by the Pennsylvania Department of Health and the National Institutes of Health.

Other coauthors of this paper are Zhiyuan Fan, Peter Y. Li, Junjie Deng, and Dimitrios C. Arhontouslis.

Media Contact

Britt Faulstick
bef29@drexel.edu
215-895-2617

 @DrexelNews

http://www.Drexel.edu/ 

Britt Faulstick | EurekAlert!
Further information:
https://drexel.edu/now/archive/2018/October/mushroom-brush-NP/
http://dx.doi.org/10.1021/acsnano.8b04947

More articles from Life Sciences:

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

nachricht Bacteria may travel thousands of miles through the air globally
25.03.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>