Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mushroom lights up the night in Brazil

07.07.2011
San Francisco State University researcher finds bioluminescent fungus not seen since 1840

In 1840, renowned English botanist George Gardner reported a strange sight from the streets of Vila de Natividade in Brazil: A group of boys playing with a glowing object that turned out to be a luminescent mushroom.


This is Neonothopanus gardneri. Credit: Cassius V. Stevani/IQ-USP, Brazil

They called it "flor-de-coco," and showed Gardner where it grew on decaying fronds at the base of a dwarf palm. Gardner sent the mushroom to the Kew Herbarium in England where it was described and named Agaricus gardneri in honor of its discoverer. The species was not seen again until 2009.

San Francisco State University researcher Dennis Desjardin and colleagues have now collected new specimens of this forgotten mushroom and reclassified it as, Neonothopanus gardneri. Findings are now online and scheduled to be published in the November/December print issue of Mycologia.

They hope that careful study of the Brazilian mushroom—which shines brightly enough to read by--and its other bioluminescent cousins around the world will help answer the question of how and why some fungi glow.

Desjardin, a professor in ecology and evolution in the SF State Biology Department [link: http://biology.sfsu.edu] and his colleagues determined that the mushroom should be placed in the genus Neonothopanus after carefully examining the mushroom's anatomy, physiology and genetic pedigree. But capturing new specimens of the mushroom to examine was a difficult task, Desjardin said, requiring a different approach than most fungi hunting.

To catch the green glow of the bioluminescent mushroom, Desjardin and his long-time research partner in Brazil, Dr. Cassius Stevani, had to "go out on new moon nights and stumble around in the forest, running into trees," he recalled, wary of nearby poisonous snakes and prowling jaguars.

But he said advances such as digital cameras have made it easier to track down bioluminescent fungi. New cameras allow researchers to photograph mushrooms that they suspect might be bioluminescent in darkened rooms and analyze the photos for a glow (sometimes one that's not visible to the human eye) within a few minutes, compared to the 30 to 40 minutes required of regular film exposure.

Bioluminescence—simply the ability of organisms to produce light on their own—is a widespread phenomenon. Jellyfish and fireflies might be the most familiar bioluminescent creatures, but organisms from bacteria to fungi to insects and fish make their own glow through a variety of chemical processes.

Bioluminescent fungi have been well-known for centuries, from the bright orange and poisonous jack o' lantern mushrooms to the phenomenon known as "foxfire," where the nutrient-sipping threads of the honey mushroom give off a faint but eerie glow in rotten logs. Glowing fungi have captured the imagination of cultures around the world, Desjardin said. "People are mostly afraid of them, calling them 'ghost mushrooms.'"

But how does a fungus make its glow—and why would it glow in the first place? It's a question that has fascinated Desjardin for some time.

Researchers believe that the fungi make light in the same way that a firefly does, through a chemical mix of a luciferin compound and a luciferase. Luciferase is an enzyme that aids the interaction among luciferin, oxygen and water to produce a new compound that emits light.

But scientists haven't yet identified the luciferin and luciferase in fungi. "They glow 24 hours a day, as long as water and oxygen are available," Desjardin explained. "But animals only produce this light in spurts. This tells us that the chemical that is acted upon by the enzyme in mushrooms has to be readily available and abundant."

The why behind the glow also remains mostly a mystery. In mushrooms where the spore-bearing part glows, some scientists think the light may help attract insects that can help disperse the spores to grow new mushrooms.

But in the case of foxfire, it's the threadlike mycelium, which seek out nutrients for the fungi, that do the glowing. Insects attracted to the mycelium might do more harm than good to the fungi if they ate the attractively lit structures.

"We have no idea yet why this happens," Desjardin admitted. "Maybe the mycelium is glowing to attract the enemy of these insects, and will eat them before they can eat the mycelium. But we don't have any data to support this."

Desjardin has collected and analyzed bioluminescent fungi from around the world, hoping to answer some of these questions. "We want to know how this happens, how it evolved, and if it evolved multiple times. Each one of these is a fascinating question that we are close to answering."

Desjardin is the director of the H. D. Thiers Herbarium at SF State, and has taught in the Biology Department since 1990. His work focuses on fungi from underexplored tropic habitats worldwide, describing and naming new or poorly known species of fungi. He currently conducts research in West Africa, Brazil, Micronesia, Indonesia, Malaysia, Thailand, the Hawaiian Islands and California.

SF State is the only master's level public university serving the counties of San Francisco, San Mateo and Marin. The university enrolls more than 30,000 students each year. With nationally acclaimed programs in a range of fields -- from creative writing, cinema and biology to history, broadcast and electronic communications arts, theatre arts and ethnic studies -- the University's more than 205,140 graduates have contributed to the economic cultural and civic fabric of San Francisco and beyond.

Nan Broadbent | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>