Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New muscular dystrophy treatment shows promise in early study

09.09.2013
A preclinical study led by researchers in the United States has found that a new oral drug shows early promise for the treatment of muscular dystrophy.

The results, which are published today in EMBO Molecular Medicine, show that VBP15 decreases inflammation in mice with symptoms similar to those found in patients with Duchenne muscular dystrophy.

The authors found that the drug protects and strengthens muscle without the harsh side effects linked to current treatments with glucocorticoids such as prednisone.

Duchenne muscular dystrophy results in severe muscle degeneration and affects approximately 180,000 patients worldwide, mostly children. Treatment with the current standard therapy, glucocorticoids, can only be used for a short time due to serious side effects leading to fragile bones and suppression of both the immune system and growth hormone production.

The researchers also observed that VBP15 inhibits the transcription factor NF-¦ÊB, a key cell-signaling molecule found in most animal cell types that plays a role in inflammation and tissue damage.

The study authors previously found out that NF-¦ÊB is active in dystrophin-deficient muscle years before the onset of symptoms, suggesting that very early treatment of Duchenne Muscular Dystrophy patients with VBP15 may prevent or delay the onset of some clinical symptoms.

¡°It is becoming increasingly clear that membrane integrity and repair are crucial factors in muscle, cardiovascular, neurodegenerative and airway disorders. The chemical properties of VBP15 also suggest potential for the treatment of other diseases.¡± remarked Kanneboyina Nagaraju, DVM, PhD, the lead author of the study and a principal investigator in the Center for Genetic Medicine Research, Children¡¯s National Medical Center in Washington, DC.

The authors conclude that VBP15 merits further investigation for efficacy in clinical trials.

The study was funded in part by the National Institutes of Health, the US Department of Defense, Muscular Dystrophy Association, Foundation to Eradicate Duchenne, and CureDuchenne Foundation.

VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects.

Christopher R. Heier, Jesse M. Damsker, Qing Yu, Blythe C. Dillingham, Tony Huynh, Jack H. Van der Meulen, Arpana Sali, Brittany K. Miller, Aditi Phadke, Luana Scheffer, James Quinn, Kathleen Tatem, Sarah Jordan, Sherry Dadgar, Olga C. Rodriguez, Chris Albanese, Michael Calhoun, Heather Gordish, Jyoti K. Jaiswal, Edward M. Connor, John M. McCall, Eric P. Hoffman, Erica K. M. Reeves, Kanneboyina Nagaraju

Read the paper: http://onlinelibrary.wiley.com/doi/10.1002/emmm.201302621/full

doi: 10.1002/emmm.201302621

Further information on EMBO Molecular Medicine is available at www.embomolmed.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
C¨¦line Carret
Editor, EMBO Molecular Medicine
Tel: +49 6221 8891 411
celine.carret@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO Communications
Further information:
http://www.embo.org
http://onlinelibrary.wiley.com/doi/10.1002/emmm.201302621/full

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>