Muscular dystrophy mystery solved; Mizzou scientist moves closer to MD solution

While scientists have identified one protein, dystrophin, as an important piece to curing the disease, another part of the mystery has eluded scientists for the past 14 years. Now, one University of Missouri scientist and his team have identified the location of the genetic material responsible for a molecular compound that is vital to curing the disease.

Duchenne muscular dystrophy (DMD), predominantly affecting males, is the most common type of muscular dystrophy. Patients with Duchenne muscular dystrophy have a gene mutation that disrupts the production of dystrophin. Absence of dystrophin starts a chain reaction that eventually leads to muscle cell degeneration and death. A previous study by Dongsheng Duan, associate professor of molecular microbiology and immunology, discovered a potential delivery method to replace the mutated genes with healthy genes. Following the replacement of these genes, Duan observed that dystrophin production was restarted in animals with muscular dystrophy.

However, while dystrophin is vital for muscle development, the protein also needs several “helpers” to maintain the muscle tissue. One of these “helper” molecular compounds is nNOS, which produces nitric oxide. This is important for muscles that are in use during high intensity movements, such as exercise.

“When you exercise, not only does the muscle contract, but the blood vessels are constricted,” Duan said. “nNOS is important because it produces nitric oxide that relaxes the blood vessels, helping to maintain the muscle with a healthy blood supply. If no blood reaches the muscle cells, they will eventually die. In DMD patients, this means the disease will progress as the muscle cells are replaced by the fibrous, bony or fatty tissue.”

Since 1994, researchers have known about the importance of nNOS, but have not been able to determine how to produce nNOS in a dystrophic muscle, or a muscle lacking dystrophin. Many scientists have tried to solve this mystery without success. In his most recent study, published Monday in The Journal of Clinical Investigation, Duan and his team identified the location of genetic material responsible for the production of nNOS.

Following the identification of the genetic material, Duan and his team created a series of new dystrophin genes. In their study, they used dystrophic mice to test the efficacy of these new genes. After genetically correcting the mice with the new dystrophin gene, Duan's team discovered that the missing nNOS was now restored in the dystrophic muscle. The mice that received the new gene did not experience muscle damage or fatigue following exercise.

“With this new discovery, we've solved a longstanding mystery of Duchenne Muscular Dystrophy,” Duan said. “This will change the way we approach gene therapy for DMD patients in the future. With this study, we have finally found the genetic material that can fully restore all the functions required for correcting a dystrophic muscle and turning it into a normal muscle.”

Media Contact

Christian Basi EurekAlert!

More Information:

http://www.missouri.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Results for control of pollutants in water

Brazilian scientists tested a simple and sustainable method for monitoring and degrading a mixture of polycyclic aromatic hydrocarbons, compounds present in fossil fuels and industrial waste. An article published in the journal Catalysis…

A tandem approach for better solar cells

Perovskite-based solar cells were first proved in 2009 to have excellent light-absorbing properties of methylammonium lead bromide and methylammonium lead iodide, collectively referred to as lead halide perovskites or, more…

The behavior of ant queens is shaped by their social environment

Specialization of ant queens as mere egg-layers is reversible / Queen behavioral specialization is initiated and maintained by the presence of workers. The queens in colonies of social insects, such…

Partners & Sponsors