Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How muscle fatigue originates in the head

05.12.2011
Researchers from the University of Zurich have now studied in detail what sportsmen and women know from experience: The head plays a key role in tiring endurance performances.

They have discovered a mechanism in the brain that triggers a reduction in muscle performance during tiring activities and ensures that one’s own physiological limits are not exceeded. For the first time, the study demonstrates empirically that muscle fatigue and changes in the interaction between neuronal structures are linked.

The extent to which we are able to activate our muscles voluntarily depends on motivation and will power or the physical condition and level of fatigue of the muscles, for instance. The latter particularly leads to noticeable and measurable performance impairments. For a long time, the research on muscle fatigue was largely confined to changes in the muscle itself. Now, a joint research project between the University of Zurich and ETH Zurich has shifted the focus to brain research. Headed by neuro-psychologist Kai Lutz from the University of Zurich in collaboration with Urs Boutellier from the Institute of Human Movement Sciences and Sport at ETH Zurich, the researchers discovered neuronal processes for the first time that are responsible for reducing muscle activity during muscle-fatiguing exercise. The third and final part of this series of experiments, which was conducted by Lea Hilty as part of her doctoral thesis, has now been published in the “European Journal of Neuroscience”.

Muscle’s nerve impulses inhibit motoric area in the brain

In the initial study, the researchers showed that nerve impulses from the muscle – much like pain information – inhibit the primary motoric area during a tiring, energy-demanding exercise. They were able to prove this using measurements in which study participants repeated thigh contractions until they could no longer attain the force required. If the same exercise was conducted under narcotization of the spinal chord (spinal anesthesia), thus interrupting the response from the muscle to the primary motoric area, the corresponding fatigue-related inhibition processes became significantly weaker than when the muscle information was intact.

In a second step, using functional magnetic resonance imaging, the researchers were able to localize the brain regions that exhibit an increase in activity shortly before the interruption of a tiring, energy-demanding activity and are thus involved in signalizing the interruption: the thalamus and the insular cortex – both areas which analyze information that indicates a threat to the organism, such as pain or hunger.

Neuronal system has regulating effect on muscle performance

The third study has now shown that the inhibitory influences on motoric activity are actually mediated via the insular cortex: In tests using a bicycle ergometer, the researchers determined that the communication between the insular cortex and the primary motoric area became more intensive as the fatigue progressed. “This can be regarded as evidence that the neuronal system found not only informs the brain, but also actually has a regulating effect on motoric activity,” says Lea Hilty, summing up the current result. And Kai Lutz points to the new research field that now opens up with these results: “The findings are an important step in discovering the role the brain plays in muscle fatigue. Based on these studies, it won’t just be possible to develop strategies to optimize muscular performance, but also specifically investigate reasons for reduced muscular performance in various diseases.” Prolonged reduced physical performance is a symptom that is frequently observed in daily clinical practice. It can also appear as a side effect of certain medication. However, so-called chronic fatigue syndrome is often diagnosed without any apparent cause.

Literature:
Lea Hilty, Lutz Jäncke, Roger Luechinger, Urs Boutellier, and Kai Lutz. Limitation of Physical Performance in a Muscle Fatiguing Handgrip Exercise Is Mediated by Thalamo-Insular Activity. Human Brain Mapping. December 10, 2010. doi: 10.1002/hbm.21177

Lea Hilty, Kai Lutz, Konrad Maurer, Tobias Rodenkirch, Christina M. Spengler, Urs Boutellier, Lutz Jäncke, and Markus Amann. Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Experimental Physiology. February 11, 2011. doi: 10.1113/expphysiol.2010.056226

Lea Hilty, Nicolas Langer, Roberto Pascual-Marqui, Urs Boutellier, and Kai Lutz. Fatigue-induced increase in intracortical communication between mid ⁄anterior insular and motor cortex during cycling exercise. European Journal of Neuroscience. November 21, 2011. doi: 10.1111/j.1460-9568.2011.07909.x

Contact:
Dr. Kai Lutz
Department of Psychology
Chair for Neuropsychology
University of Zurich
Tel.: +41 44 635 73 95
E-Mail: Kai.Lutz@uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

Further reports about: ETH Human vaccine insular cortex muscle fatigue nerve impulses

More articles from Life Sciences:

nachricht Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise
11.12.2019 | Max-Planck-Institut für Polymerforschung

nachricht Predicting a protein's behavior from its appearance
11.12.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

Tuberculosis: New drug substance BTZ-043 is being tested on patients for the first time

11.12.2019 | Health and Medicine

One-third of recent global methane increase comes from tropical Africa

11.12.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>