Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multistage nanovector system provides sustained delivery of siRNA cancer therapeutic in mice

06.05.2010
New research by scientists at The University of Texas Health Science Center at Houston (UTHealth) and The University of Texas M. D. Anderson Cancer Center could make it easier for patients to use a family of promising experimental cancer therapeutics known as small interfering RNA (siRNA).

siRNA is a part of an innovative strategy to disrupt the activity of cancer-related genes that has broad applications to other diseases.

In the May 1 issue of Cancer Research, the scientists reported that a multistage nanovector system for the delivery of siRNA significantly lengthened the therapeutic effects of the treatment in two independent mouse models of advanced ovarian cancer.

The researchers reported that a single intravenous dose of siRNA targeting the EphA2 oncoprotein provided the same tumor shrinkage for three weeks as that now achieved by six doses over the same period.

“The multistage delivery system is revolutionary in that it allows the therapeutic payloads to cross the biological barriers in the body and reach their target. It further helps release agents over long periods of time directly into the bloodstream, which is unprecedented,” said Mauro Ferrari, Ph.D., chairman of the Department of NanoMedicine and Biomedical Engineering at The University of Texas Medical School at Houston, which is part of UTHealth. “We are very excited about the results of this paper, since it provides the first validation of the therapeutic advantages of the multistage delivery system in animal models of cancer.”

The multistage nanovector system is composed of nanoporous silicon carrier particles that are about 100 times smaller than a strand of hair, which can be loaded with tiny bubbles of fat called nanoliposomes containing siRNA. The system provides for the release of the nanoliposomes and their contents.

“This is an exciting development because RNA interference has worked well in an animal model but has such a short half-life that it requires frequent delivery. A three-week dosing period is much closer to the sustained dosing needed to properly test this therapy in clinical trials,” said Anil Sood, M.D., professor in M.D. Anderson’s Departments of Gynecological Oncology and Cancer Biology.

The multistage nanovector system was developed in Ferrari’s laboratory and the liposomal siRNA was developed at M. D. Anderson.

“We have provided the first in vivo therapeutic validation of a novel, multistage siRNA delivery system for sustained gene silencing with broad applicability to pathologies,” wrote Takemi Tanaka, Ph.D., a co-first author and a research assistant professor of nanomedicine and biomedical engineering at the UT Medical School at Houston, and the other investigators in the paper..

Gabriel Lopez-Berestein, M.D., professor of experimental therapeutics at M. D. Anderson, Sood, co-director of M. D. Anderson’s Center for RNA Interference and Non-Coding RNA, and Ferrari are the senior authors.

“EphA2 is an important target because it’s overexpressed in 70 percent of ovarian cancers and is strongly associated with poor survival and a higher likelihood of advanced or metastatic disease,” said Lopez-Berestein. “It’s also overexpressed in melanoma, breast and lung cancers with the same poor prospects for patients.”

The protein is not present in normal tissue and cannot be attacked using more traditional drug approaches.

Study contributors from UTHealth include: René Nieves-Alicea, Ph.D.; Aman Preet Singh Mann, Xuewu Liu, Ph.D.; Rohan Bhavane, Jianhua Gu, Jean Fakhoury and Biana Godin, Ph.D.

M. D. Anderson contributors include: Lingegowda S. Mangala, Ph.D., co-first author; Edna Mora, M.D.; Hee-Dong Han, Pablo E. Vivas-Mejia, Ph.D.; Mian M.K. Shahzad, Chunhua Lu, Koji Matsuo, Rebecca Stone, M.D.; and Alpa Nick, M.D.

Ciro Chiappini, a graduate research assistant at The University of Texas at Austin, also contributed to the study.

The study, which is titled “Sustained Small Interfering RNA Delivery by Mesoporous Silicon Particles,” received support from the Department of Defense, the State of Texas Emerging Technology Fund, National Aeronautics and Space Administration, the Ovarian Cancer Research Fund Program Project Development Grant, The University of Texas M.D. Anderson Cancer Center Ovarian Cancer Specialized Program of Research Excellence, the National Institutes of Health, the Zarrow Foundation, the Betty Ann Asche Murray Distinguished Professorship, the Baylor WRHR Grant and the GCF Molly-Cade Ovarian Cancer Research Grant and the Alliance for NanoHealth.

Ferrari serves as a professor of experimental therapeutics at the M. D. Anderson Cancer Center, adjunct professor of bioengineering at Rice University, adjunct professor of biochemistry and molecular biology at The University of Texas Medical Branch at Galveston, adjunct professor of engineering at the University of Houston, and president of the Alliance for NanoHealth.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

Further reports about: Cancer Medical Wellness Multistage RNA Texas UTHealth health services mouse model ovarian ovarian cancer

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Three NASA missions return first-light data

24.09.2018 | Physics and Astronomy

Brown researchers teach computers to see optical illusions

24.09.2018 | Information Technology

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>