Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis: Endogenous retrovirus HERV-W key to nerve tissue damage

28.06.2019

Neurology: Publication in PNAS

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) affecting brain and spinal cord. In collaboration with colleagues from the USA and Canada, a team of Düsseldorf-based researchers led by Prof. Dr. Patrick Küry from the Department of Neurology has discovered a new way in which nerve tissue is damaged by an endogenous retrovirus.


A microglial cell (green) contacts and attacks a myelinated axon (red). In the presence of the pHERV-W envelope protein, this interaction leads to axonal injury. The blue structures are cell nuclei.

HHU / Joel Gruchot / Patrick Küry

They authors have published their findings in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Early disease stages of MS are primarily characterised by immune cell infiltration of the CNS. This causes inflammation that damages the so-called myelin sheaths. Myelin sheaths are electrically insulating structures established by specialised glial cells of the CNS, referred to as ‘oligodendrocytes’.

These structures protect, nourish and stabilise axons, which transmit electrical signals between neurons.

There is a large therapeutic repertoire of immunomodulatory drugs available that can effectively target the inflammatory aspects of relapsing multiple sclerosis (RMS). But when MS progresses, damage accumulates which ultimately results in irreversible deficits and clinical disability.

Unfortunately, despite decades of intense research disease progression is still untreatable as there are no therapies available that either prevent damage or repair injured axons.

In a new study published online on June 18 in the renowned journal PNAS a research team led by Prof. Dr. Patrick Küry from the Department of Neurology (chaired by Prof. Dr. Hans-Peter Hartung) has shed light on a novel axon damage mechanism which could be highly relevant for progressive MS (PMS) patients.

As outlined by the first author of this research paper, Dr. David Kremer, the envelope (ENV) protein of the pathogenic human endogenous retrovirus type W (pHERV-W) was found to be a major contributor to nerve damage in MS.

In collaboration with research teams in Cleveland (OH, USA) and Montreal (CAN) the authors demonstrated that the ENV protein drives CNS resident microglial cells to contact and damage myelinated axons.

Alongside the scientific research into determining how the damage mechanism works, clinical developments aiming at neutralising the harmful ENV protein in MS patients have also progressed.

Two clinical studies conducted under the supervision of Prof. Hartung have already successfully tested the ENV-neutralising antibody temelimab. MRI scans of the participants treated in the study showed reduced damage to the nerve tissue.

The Düsseldorf-based researchers and their colleagues can therefore explain why neurodegeneration is decreased in patients treated with temelimab. This antibody specifically binds to the ENV protein of the retrovirus and blocks its activity in the CNS.

As stated by Prof. Hartung, future clinical studies in progressive MS patients will now have to demonstrate whether temelimab treatment can also improve clinical symptoms resulting from neurodegeneration.

Originalpublikation:

Kremer D, Gruchot J, Weyers V, Oldemeier L, Göttle P, Healy L, Ho Jang J, Kang T Xu Y, Volsko C, Dutta R, Trapp BD, Perron H, Hartung HP, Küry P., pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis, Proc. Natl. Acad. Sci. U. S. A. 2019 Jun 18. pii: 201901283
DOI: 10.1073/pnas.1901283116

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Further information:
http://www.hhu.de/

More articles from Life Sciences:

nachricht Developing a digital holography-based multimodal imaging system to visualize living cells
03.06.2020 | Kobe University

nachricht Possible physical trace of short-term memory found
03.06.2020 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>