Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple paternity may offer fewer advantages than previously thought

15.04.2016

Females can enhance the survival chances of their offspring by mating with multiple males. When it comes to immunological benefits, however, female promiscuity may not provide the young the advantages long suspected, as a research team from Vetmeduni Vienna confirmed. The researchers also provided the first evidence that females are much more susceptible to Salmonella infection than males. The study was published in the Journal of Evolutionary Biology.

Promiscuity is common among females in the animal kingdom. Mating with multiple males can increase genetic diversity and enhance the survival of the offspring. When given a choice, female house mice mate with multiple males. “The females select their partner on the basis of their scent markings. These chemical signals provide a surprising amount of information about possible partners, including their health and disease resistance,” explains Kerstin Thonhauser of the Konrad Lorenz Institute for Ethology at Vetmeduni Vienna.


Multiple paternity is no advanatge for the offspring of mice in the case of an infection with Salmonella.

Kerstin Thonhauser/Vetmeduni Vienna

The team of researchers led by Dustin Penn explored the previously unanswered question whether polyandry in house mice also offered an advantage in terms of immune resistance. The researchers challenged animals from single- and multiple-sired litters with two different strains of Salmonella: a primary infection, which was harmless, and effectively a vaccine, and then a secondary infection. Prior to the study, there had been little sex-specific data concerning the immune response to Salmonella infection, so the team also considered this question in their study.

Polyandry offered mice no advantages against Salmonella

In general, there was an enormous variation in the bacterial clearance among the mice, and especially among different families, but no difference was found between single- and multiple sired offspring. These results do not support the hypothesis that the increased genetic diversity of multiple-sired litters enhances immune resistance.

Male mice were surprisingly resistant

Among mice, males are usually more susceptible to infectious diseases, yet in the case of Salmonella, however, this proved not to be the case. The immune system of male mice handled this challenge better than the females, as was confirmed by the lower bacterial load among males. No other study to date has demonstrated such a sex-dependent response for Salmonella. Unfortunately, most studies on mice have focused on males, as a way to control for variation in female reproductive cycling, and so we understand little about sex differences. Such sex difference should be considered in future immunological research, says Thonhauser.

Time to reconsider hypotheses on multiple paternity

Nonetheless, Thonhauser and colleagues stress that female promiscuity could still provide immunological benefits for offspring by reducing disease transmission within litters. “There are additional factors to consider. It is possible that a multiple paternity protects litters against challenges from multiple pathogens. Our study was a first step towards testing these more complicated scenarios regarding the advantages of multiple paternity.”

Service
The article “Does multiple paternity influence offspring disease resistance?” by Thonhauser K.E., Raveh S., Thoß M. and Penn D.J. was published in Journal of Evolutionary Biology. doi: 10.1111/jeb.12854
http://onlinelibrary.wiley.com/doi/10.1111/jeb.12854/full

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Kerstin Thonhauser
Konrad Lorenz Institute of Ethology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-7355
kerstin.thonhauser@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat Georg Mair | Veterinärmedizinische Universität Wien

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>