Multi-resistant skin bacteria spreading in hospitals

Coagulase-negative staphylococci (CNS) are bacteria that belong to the protective bacterial flora on the skin and seldom cause infections in healthy individuals. However, CNS, and especially Staphylococcus epidermidis, are a common cause of care-related infections, in particular infections following various types of prosthetic surgery.

These infections are often difficult to treat, as certain strains of S. epidermidis have become resistant to most antibiotics (multi-resistant), and has a capacity to fasten on and form a so-called biofilm around catheters and inserted prostheses.

In his dissertation work, Micael Widerström found genetically closely related strains of multi-resistant S. epidermidis, in hospital patients from most of the eleven northern European hospitals studied, eight of them in Sweden. These closely related strains could not be found among healthy individuals in the community. The findings indicate that S. epidermidis, which has a special capacity to adapt to hospital environments, seems to be spreading within and between Swedish hospitals.

Current antibiotics and hygiene routines do not seem to prevent these strains from getting a foothold in hospital settings. The mechanisms for how these multi-resistant bacteria spread at our hospitals need to be charted if we are to be able to reduce the risk and cost of care-related infections.

The dissertation also describes another species of coagulase-negative staphylococcus, Staphylococcus saprophyticus. This is a common cause of urinary tract infections that young and middle-aged women contract outside the hospital environment. It is unclear how urinary tract infections caused by S. saprophyticus spread and whether certain genetic variants are especially likely to cause this type of infection. In the study, the same genetic variant of S. saprophyticus was found in urine samples from women in different countries and separated in time by several years. This indicates that certain genetic variants of S. saprophyticus are established as the cause of urinary tract infections and seem to be spreading within and among countries.

For more information, please contact: Micael Widerström, doctoral candidate at the Dept. of Clinical Microbiology, Umeå University, and a physician at the County Hospital in Östersund, at mobile: +46 (0)70-698 19 60 or mikael.widerstrom@jll.se.

Pressofficer Bertil Born; bertil.born@adm.umu.se; +46-703 886 058

Media Contact

Bertil Born idw

More Information:

http://www.vr.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors