Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Chemist Discovers Shortcut for Processing Drugs

09.03.2011
Prolific chemist adds another breakthrough to long list of accomplishments

A prolific University of Missouri chemist has discovered a quicker and easier method for pharmaceutical companies to make certain drugs.

Jerry Atwood, Curator's Professor and Chair of the Department of Chemistry
Jerry Atwood, Curator’s Professor and Chair of the Department of Chemistry in the MU College of Arts and Science, has recently published a paper – his 663rd in a refereed journal – that states that highly pressurized carbon dioxide at room temperature could replace the time consuming and expensive methods currently used to manufacture certain pharmaceutical drugs.

In the article, “A New Strategy of Transforming Pharmaceutical Crystal Forms,” published in a recent edition of the Journal of the American Chemical Society (JACS), Atwood and a team of researchers explain how manufacturers of popular drugs such as clarithromycin (an antibiotic drug) and lansoprazole (an acid reflux drug) could benefit from this process.

To develop basic drugs that are safe for people to consume, manufacturers must utilize chemistry to make specific crystals that constitute the eventual compound. Depending on the drug, current methods may include high-temperature heating, raw material altering, washing, filtering, and intensive drying. Atwood’s team found that pressurizing carbon dioxide can bring about the desired crystallization “with ease” and at normal room temperatures. Atwood said this discovery has the potential to streamline work flow and provide more safety for those who work with these chemicals.

“I believe this could have huge implications for the pharmaceutical industry,” Atwood said. “In addition to streamlining processes, pressurizing gas could circumvent some of the more difficult techniques used on an industrial scale, leading to better pharmaceuticals, more effective treatments and ultimately a lower price.”

Atwood points out that cost savings may be minimal to consumers, however, as drug companies set prices to recoup billion dollar investments in multiple-drug trials. Only one of every five clinically tested drugs makes it to market, Atwood said, and the companies must make a profit on the drug that becomes widely used.

The JACS paper was recognized by Chemical & Engineering News in its “News of the Week,” an accomplishment Atwood has achieved nine times. Despite all of his success, Atwood remains focused on his ultimate goal: to develop a chemotherapy drug with a magnetic component that could bring targeted delivery of medication, rather than the bloodstream saturation process used now.

“When I lecture a group of world-class scientists, I tell them the good news and the bad news,” Atwood said. “The bad news is that we must make a major breakthrough like curing a disease. If we can do that, then our field of chemistry will flourish, and we will pay society back for their investment. If we fail to make the breakthrough, society won’t support what we are doing forever. The good news is that just one of our research groups has to do it, so the pressure is on all or us, not just on you or me.”

Atwood is one of the top 50 chemists in the world in terms of citations and has published 663 papers in his career. The more citations a scientist has, the higher their rating known as the Hirsch index is. The H-index ranks international researchers according to the volume of published articles and the number of times those articles are cited, thus measuring a particular scientist’s influence. An H-index of 50 places a chemist in the top 500 worldwide. Atwood has an H-index of 83.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>