Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU scientists unlock key enzyme using ‘cool’ method

01.03.2010
A team of Michigan State University scientists - using a new cooling method they created - has uncovered the inner workings of a key iron-containing enzyme, a discovery that could help researchers develop new medicines or understand how enzymes repair DNA.

Taurine/alpha-ketoglutarate dioxygenase, known as TauD, is a bacterial enzyme that is important in metabolism. Enzymes in this family repair DNA, sense oxygen and help produce antibiotics.

Specifically, the MSU team was interested in how iron and oxygen atoms reacted together in the enzyme. Understanding how TauD works, which serves as a model for many other proteins, has implications in the scientific and medical fields, said Robert Hausinger, MSU professor of microbiology and molecular genetics.

"This is a broad enzyme family with similar mechanisms," he said. "Understanding how TauD works sheds light on how many other enzymes function from bacteria to humans. This can be applicable to a wide variety of essential enzymes of medical and agricultural interest."

For example, Hausinger said, understanding how the enzyme works can help scientists design inhibitors to prevent it from doing its job, which is a key step in preventing diseases. Also, understanding how the iron inserts oxygen atoms into other molecules provides insight into how enzymes metabolize the majority of medical drugs or environmental pollutants in the human body.

As understanding how enzymes work can be very complicated - such reactions often are complex, fast and require multiple steps - the MSU team developed a new method to follow the TauD reaction. The difficult part for researchers was to slow down the reaction enough that the individual steps can be observed; one way to slow down an enzymatic reaction is to cool it.

The team used a stream of cold nitrogen gas to slow down the reaction at -36 C (-33 F). To prevent freezing and to keep the reaction going, the scientists used ethylene glycol - the same antifreeze that goes in vehicles.

Once the reaction started, the team used lasers - in an advanced method called Raman spectroscopy - to follow the vibrations of iron and oxygen atoms in TauD to determine how the reaction progressed. They found never seen before steps in the TauD reaction, overturning conventional thought.

The project was a collaboration between the laboratories of Hausinger and Denis Proshlyakov of MSU's Department of Biochemistry and Molecular Biology, with support from MSU colleague Piotr Grzyska and Evan Appelman of the Argonne National Laboratory in Chicago.

The research, supported by the National Institutes of Health, was recently published in the Proceedings of National Academy of Science Early Edition.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: DNA MSU Raman spectroscopy TauD molecular genetic molecular genetics oxygen atom

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>