Moving microscopic vision into another new dimension

Chemistry Nobel Laureate Ahmed H. Zewail and colleagues moved high-resolution images of vanishingly small nanoscale objects from three dimensions to four dimensions when they discovered a way to integrate time into traditional electron microscopy observations. Their laser-driven technology allowed researchers to visualize 3-D structures such as a ring-shaped carbon nanotube while it wiggled in response to heating, over a time scale of femtoseconds.

A femtosecond is one millionth of one billionth of a second. But the 3-D information obtained with that approach was limited because it showed objects as stationary, rather than while undergoing their natural movements.

The scientists describe how 4-D scanning ultrafast electron microscopy and scanning transmission ultrafast electron microscopy overcome that limitation, and allow deeper insights into the innermost structure of materials. The reports show how the technique can be used to investigate atomic-scale dynamics on metal surfaces, and watch the vibrations of a single silver nanowire and a gold nanoparticle. The new techniques “promise to have wide ranging applications in materials science and in single-particle biological imaging,” they write.

Zewail and colleagues acknowledge funding from the National Science Foundation, the Air Force Office of Scientific Research, the Gordon & Betty Moore Physical Biology Center at Caltech, and the Arab Fund for Economic and Social Development.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors