Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mouse model for autism yields clues to a 50-year-old mystery

21.03.2012
Early disruptions in serotonin signaling in the brain may contribute to autism spectrum disorder (ASD), and other "enduring effects on behavior," Vanderbilt University researchers report.

Serotonin is a brain chemical that carries signals across the synapse, or gap between nerve cells. The supply of serotonin is regulated by the serotonin transporter (SERT). In 2005, a team of Vanderbilt researchers led by Randy Blakely and James Sutcliffe identified rare genetic variations in children with ASD that disrupt SERT function.

In a new study published this week in the Proceedings of the National Academy of Sciences (PNAS), the researchers report the creation of a mouse model that expressed the most common of these variations.

The change is a very small one in biochemical terms, yet it appears to cause SERT in the brain to go into "overdrive" and restrict the availability of serotonin at synapses.

"The SERT protein in the brain of our mice appears to exhibit the exaggerated function and lack of regulation we saw using cell models," said Blakely, director of the Vanderbilt Silvio O. Conte Center for Neuroscience Research.

"Remarkably, these mice show changes in social behavior and communication from early life that may parallel aspects of ASD," noted first author Jeremy Veenstra-VanderWeele, assistant professor of Psychiatry, Pediatrics and Pharmacology.

The researchers conclude that a lack of serotonin during development may lead to long-standing changes in the way the brain is "wired."

In 1961, investigators at Yale discovered that as many as 30 percent of children with autism have elevated blood levels of serotonin, a finding described as "hyperserotonemia."

Since then, these findings have been replicated many times. Indeed, hyperserotonemia is the most consistently reported biochemical finding in autism, and is a highly inherited trait. Yet, the cause or significance of this "bio-marker" has remained shrouded in mystery.

Until now. In the current study, Veenstra-VanderWeele, Blakely and their colleagues showed that they could produce hyperserotonemia in mice that express a variant of a human SERT gene associated with autism.

Because the genetic change makes the transporter more active, higher levels of serotonin accumulate in platelets and therefore in the bloodstream. In the brain, overactive transporters should have the opposite effect – lowering serotonin levels at the synapse and producing behavioral changes relevant to autism. That's exactly what the researchers observed.

Of course, no mouse model can completely explain or reproduce the human condition. Neither does a single genetic variation cause autism. Experts believe the wide spectrum of autistic behaviors represents a complex web of interactions between many genes and environmental factors.

But animal models are critical to exploring more deeply the basis for the developmental changes that are observed in ASD. The scientists are using these mice to explore how altered brain serotonin levels during development may produce long-lasting changes in behavior and impact the risk for autism.

Scientists from the National Institute of Mental Health, the Medical University of South Carolina and the University of Texas Health Science Center in San Antonio contributed to the study.

The research was supported by the National Institutes of Health, the advocacy organization Autism Speaks and the American Academy of Child and Adolescent Psychiatry.

Bill Snyder | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>