Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More insights into healthy aging mechanisms from the roundworm

22.11.2018

What mechanisms ensure healthy aging? Researchers from IUF and HHU in Düsseldorf investigate this in the roundworm, an established organism for aging research. A study which was recently published in EMBO Reports provides new insights into the mechanisms of longevity promoted by reduced mitochondrial activity.

Median life expectancy of our society is still increasing which leads us to the question: how can we extend healthy aging? This is being investigated on a molecular level in the model organism Caenorhabditis elegans*, a transparent round worm with a size of about 1 mm.


C. elegans’ mitochondria in muscles (red) and intestine (green) are visualized through the expression of mitochondrial proteins tagged to fluorescent markers and expressed under different promoters.

A. Schiavi, AG Ventura/IUF

It is widely used in research on aging processes due to conserved genes and age-associated features in comparison to humans. Up to now, researchers know that interventions that promote healthy aging are typically associated with increased robustness and stress resistance, which is the ability to better prevent harmful influences.

Paradoxically, reducing the activity of core biological processes such as mitochondrial (cellular powerhouses) or insulin metabolism promotes the expression of adaptive responses, which in turn increase animal longevity and resistance to stress.

In a study that was recently published in EMBO Reports, Dr. Natascia Ventura’s research group from IUF and HHU in Düsseldorf, Germany, investigated for the first time the relation between the extended C. elegans lifespan elicited by reducing mitochondrial functionality and resistance to genotoxic (gene damage) stress e.g. by irradiation and chemical substances.

They found that reducing mitochondrial activity during development confers germline (cells, whose genetic material can be passed on to offsprings) resistance to DNA damage-induced cell cycle arrest and apoptosis (cell death).

Interestingly, they showed that although this mechanism requires somatic cells (all other, non-germline cells which are most body cells), it is uncoupled from those required for somatic robustness.

Specifically, the C. elegans homologs of the BRCA1 and BARD1 tumor suppressor genes, brc-1 and brd-1, were identified as mediators of the anti-apoptotic effect but dispensable for lifespan extension upon mitochondrial stress. The study was conducted in cooperation with colleagues from Cologne (Germany), Norway and the USA.

“Mitochondria are key organelles required for proper cell and body homeostasis. Long-termed maintenance of mitochondrial function and quality is of vital importance for human health”, states the director of the Central Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University Düsseldorf, Prof. Fritz Boege.

“We try to better understand the molecular mechanisms involved in mitochondrial stress extension of lifespan in order to develop intervention strategies which may allow us to extend healthy aging in the future. One additional aspect investigated in our lab are mitochondrial-associated diseases of genetic or environmental origin, which span from developmental to age-associated pathologies”, explains Dr. Natascia Ventura, who leads a joint liaison group of the IUF – Leibniz Research Institute for Environmental Medicine and the Central Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University Düsseldorf.

“We all strive for a long and healthy life. It will be very exciting to see which insights we can gain in the future and how this will allow us to ultimately promote healthy aging”, adds Prof. Jean Krutmann, director of IUF.


* About the model organism Caenorhabditis elegans
The roundworm C. elegans is widely used in aging research for several reasons: It is a multicellular organism with a short life cycle and mean lifespan of 15-20 days. Its genome is completely sequenced and more than 60 percent of its genes have the same structure and function of human genes. The worm has a small size of about 1 mm, it is transparent, and it has very well characterized phenotypes (appearance) and behaviors. Remarkably, several age-associated features are conserved between C. elegans and humans: progressive degeneration of different tissues, decline in physiological functions and resistance to stress, and increased probability of death with age. These evolutionarily conserved animal features can be analyzed under the microscope to study the effects of genetic or environmental interventions on the aging process, with important implication for human health.

About the IUF
The IUF – Leibniz Research Institute for Environmental Medicine investigates the molecular mechanisms through which particles, radiation and environmental chemicals harm human health. The main working areas are environmentally induced aging of the cardiopulmonary system and the skin as well as disturbances of the nervous and immune system. Through development of novel model systems the IUF contributes to the improvement of risk assessment and the identification of novel strategies for the prevention / therapy of environmentally induced health damage.

More information: http://www.iuf-duesseldorf.com.

The IUF is part of the Leibniz Association: http://www.leibniz-gemeinschaft.de/en/home.

Contact
Christiane Klasen, Personal Assistant to the institute’s Director
IUF – Leibniz Research Institute for Environmental Medicine
Auf’m Hennekamp 50
40225 Düsseldorf
Germany
Email: Christiane.Klasen@IUF-Duesseldorf.de
Phone: +49 (0)211 3389 216

Originalpublikation:

Torgovnick A, Schiavi A, Shaik A, Kassahun H, Maglioni S, Rea SL, Johnson TE, Reinhardt HC, Honnen S, Schumacher B, Nilsen H, Ventura N: BRCA1 and BARD1 mediate apoptotic resistance but not longevity upon mitochondrial stress in Caenorhabditis elegans. EMBO Rep 2018. doi: 10.15252/embr.201845856. Link: https://www.doi.org/10.15252/embr.201845856

Christiane Klasen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Organized chaos in the enzyme complex: surprising insights and new perspectives
06.07.2020 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Gut bacteria improve type 2 diabetes risk prediction
06.07.2020 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>