Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New monoclonal antibody developed that can target proteins inside cancer cells

14.03.2013
Researchers have discovered a unique monoclonal antibody that can effectively reach inside a cancer cell, a key goal for these important anticancer agents, since most proteins that cause cancer or are associated with cancer are buried inside cancer cells.

Scientists from Memorial Sloan-Kettering Cancer Center and Eureka Therapeutics have collaborated to create the new human monoclonal antibody, which targets a protein associated with many types of cancer and is of great interest to cancer researchers.

Unlike other human therapeutic monoclonal antibodies, which can target only proteins that remain on the outside of cancer cells, the new monoclonal antibody, called ESK1, targets a protein that resides on the inside of the cell.

ESK1 is directed at a protein called WT1, which is overexpressed in a range of leukemias and other cancers including myeloma and breast, ovarian, and colorectal cancers. WT1 is a high priority target for cancer drugs because it is an oncogenic protein, meaning that it supports the formation of cancer. In addition, it is found in few healthy cells, so there are less likely to be side effects from drugs that target it.

"This is a new approach for attacking WT1, an important cancer target, with an antibody therapy. This is something that was previously not possible," said David A. Scheinberg, MD, PhD, Chair of the Sloan-Kettering Institute's Molecular Pharmacology and Chemistry Program and an inventor of the antibody. "There has not been a way to make small molecule drugs that can inhibit WT1 function. Our research shows that you can use a monoclonal antibody to recognize a cancer-associated protein inside a cell, and it will destroy the cell."

The first studies of the antibody are showing promise in preclinical research as a treatment for leukemia as reported March 13, 2013, in Science Translational Medicine.

"ESK1 represents a paradigm change for the field of human monoclonal antibody therapeutics," said Cheng Liu, PhD, President and Chief Executive Officer of Eureka Therapeutics. "This research suggests that human antibody therapy is no longer limited to targeting proteins present outside cancer cells, but can now target proteins within the cancer cell itself."

ESK1 was engineered to mimic the functions of a T cell receptor, a key component of the immune system. T cells have a receptor system that is designed to recognize proteins that are inside the cell. As proteins inside the cell get broken down as part of regular cellular processes, molecules known as HLA molecules carry fragments of those proteins — known as peptides — to the surface. When T cells recognize certain peptides as abnormal, the T cell kills the diseased cell.

In the current study, the investigators showed that ESK1 alone was able to recognize WT1 peptides and kill cancer cells in the test tube and also in mouse models for two different types of human leukemia. "We were surprised that the antibody worked so well on its own," said Dr. Scheinberg, senior author of the paper. "We had originally expected that we might need to use the antibody as a carrier to deliver a drug or a radioactive therapy to kill the cancer cells, but this was not necessary."

Additional studies must be done in the laboratory before ESK1 is ready to be tested in patients. But the monoclonal antibody was engineered to be fully human, which should speed the time it takes to move the drug into the clinic. Researchers expect that the first clinical trials, for leukemia, could begin in about a year.

The antibody was developed under a collaborative effort between Memorial Sloan-Kettering and Eureka, which have jointly filed for patent protection.

This work was supported by grants from the Leukemia and Lymphoma Society, the National Cancer Institute, the Sloan-Kettering Institute's Experimental Therapeutics Center and Technology Development Fund, the Commonwealth Foundation for Cancer Research, the Tudor and Glades Foundations, the Merker Fund, the Lymphoma Foundation, and the Mesothelioma Applied Research Foundation.

About Memorial Sloan-Kettering Cancer Center

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private institution devoted to prevention, patient care, research, and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose, and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide. For more information, go to http://www.mskcc.org.

About Eureka Therapeutics

Eureka Therapeutics is a privately held biotechnology company located in the San Francisco Bay Area, focused on the discovery of fully-human antibody drugs for the treatment of cancer. Utilizing its antibody drug discovery and engineering technologies, Eureka is advancing safe and effective therapies for targeting previously inaccessible cancer antigens. The company has built an early stage pipeline of innovative drugs, with the most advanced candidate at pre-clinical stage in collaboration with Memorial Sloan-Kettering Cancer Center. For more information about Eureka Therapeutics, please visit: http://www.eurekainc.com.

Caitlin Hool | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>