Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey brains signal the desire to explore

08.09.2009
Sticking with what you know often comes at the price of learning about more favorable alternatives.

Managing this trade-off is easy for many, but not for those with conditions such as Alzheimer's disease or obsessive-compulsive disorder who are trapped in simple routines.

Using brain scans in monkeys, Duke University Medical Center researchers are now able to predict when monkeys will switch from exploiting a known resource to exploring their options.

"Humans aren't the only animals who wonder if the grass is greener elsewhere, but it's hard to abandon what we know in hopes of finding something better," said John Pearson, Ph.D., research associate in the Duke Department of Neurobiology and lead author of a study published in this week's Current Biology.

"Studies like this one help reveal how the brain weighs costs and benefits in making that kind of decision," Pearson said. "We suspect that such a fundamental question engages many areas of the brain, but this is one of the first studies to show how individual neurons can carry signals for these kinds of strategic decisions."

The researchers looked at how nerve cells fired in a part of the brain known as the posterior cingulate cortex as the monkeys were offered a selection of rewards. Generally, these neurons fired more strongly when monkeys decided to explore new alternatives.

The monkeys started with four rewards to choose from, each a 200 microliter cup of juice. After that, the four targets began to slowly change in value, becoming larger or smaller. The monkeys were free to explore the other targets or stay with the initial target, whose value they knew for certain. Monkeys had to select an option to learn its current value and integrate this information with their knowledge of the chances of getting more juice at a different target.

By studying the individual neurons, the researchers could predict which strategy the monkey would employ.

"These data are interesting from a human health perspective, because the posterior cingulate cortex is the most metabolically active part of the brain when we are daydreaming or thinking to ourselves, and it is also one of the first parts of the brain to show damage in Alzheimer's disease," said Michael Platt, Ph.D., professor of neurobiology and evolutionary anthropology at Duke and senior author of the study.

"People with Alzheimer's become set in their ways and don't explore as much, which may be because this part of the brain is damaged," Platt said. "Likewise, in people with obsessive-compulsive disorder, they can become fixed on certain activities or patterns of activity and can't disengage from them, which may also relate to changes in this part of the brain that renders them mentally unable to switch gears between exploring and exploiting."

More research is needed to learn about how this part of the brain functions, which might be crucial to the flexible adaptation of strategy in response to changing environments, Pearson said.

Other authors include Benjamin Y. Hayden and Sridhar Raghavachari of the Duke Department of Neurobiology. This work was supported by a National Institute on Drug Abuse postdoctoral fellowship, a National Institutes of Health grant, and the Duke Institute for Brain Studies.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Three NASA missions return first-light data

24.09.2018 | Physics and Astronomy

Brown researchers teach computers to see optical illusions

24.09.2018 | Information Technology

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>