Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules wrestle for supremacy in creation of superstructures

17.08.2009
Research at the University of Liverpool has found how mirror-image molecules gain control over each other and dictate the physical state of superstructures.

The research team studied 'chiral' or 'different-handed' molecules which are distinguishable by their inability to be superimposed onto their mirror image.

Such molecules are common – proteins use just one mirror form of amino acids and DNA, one form of sugars. Chirality leads to profound differences in the way a molecule functions – for example, drugs such as thalidomide can have positive effects on a patient but can prove harmful in their mirror image form.

Molecules can also assemble in large numbers and form 'superstructures' such as snowflakes which are created from large numbers of water molecules. When chiral molecules assemble they can create 'handed' superstructures; for example left-handed molecules can assemble together to make a left-handed superstructure. The Liverpool team studied this process in detail by assembling molecules at flat surfaces and using imaging techniques to map the formation of superstructures at nanoscale level.

Before now, scientists have not known whether, in systems containing both left-handed and right-handed molecules, one mirror-form of a molecule could take supremacy over its opposite number in the creation of superstructures, dictating their physical state and chemical and biological properties.

The research found that when equal numbers of mirror-molecules are present at the surface, they organise into separate left and right-handed superstructures, each with distinctly different properties. Crucially, a small imbalance in the population leads to a dramatic difference and only the molecules in the majority assemble into its superstructure, while the minority is left disordered at the surface and unable to create advanced molecular matter.

Professor Rasmita Raval from the University's Surface Science Research Centre said: "We were surprised at these results. All perceived wisdom was that the left and right-handed molecules would simply create their respective superstructures in quantities that reflected the molecular ratio – that is, we would observe proportional representation. Instead, what we obtained was a kind of 'molecular democracy' that worked on a 'first-past-the-post' system where the majority population wrested chiral control of the superstructures and the minority was left disorganised."

Theoretical modelling carried out by the University of Eindhoven in the Netherlands found that this behaviour arises from the effects of entropy, or disorder, which leads the chiral molecules in the majority to preferentially organise into their superstructure.

The work has important implications in the pharmaceuticals industry and could lead to the development of surface processes to enable separation of drugs and products that are currently difficult to purify. The research also introduces the possibility that assembly processes at surfaces may naturally have led to the evolution of proteins and DNA – the molecules of life – containing just one mirror form of amino acids and sugars.

The research, in collaboration with the University of Eindhoven, is published in Nature Chemistry.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>