Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule that gives energy-burning brown fat its identity could lead to drugs for obesity

14.03.2018

While most fat cells in the human body store energy, everyone has a small subset of brown fat cells that do the opposite--burn energy and generate heat. Now, Salk researchers have discovered how the molecule ERRγ gives this "healthier" brown fat its energy-expending identity, making those cells ready to warm you up when you step into the cold, and potentially offering a new therapeutic target for diseases related to obesity. The paper appears in Cell Reports on March 13, 2018.

"This not only advances our understanding of how the body responds to cold, but could lead to new ways to control the amount of brown fat in the body, which has links to obesity, diabetes and fatty liver disease," says senior author Ronald Evans, Howard Hughes Medical Institute investigator and holder of Salk's March of Dimes Chair in Molecular and Developmental Biology.


Infrared images indicate the much warmer temperatures of a normal mouse (left) compared to a mouse unable to make ERR gamma (right).

Credit: Salk Institute

Until about a decade ago, scientists thought that only babies--who can't yet shiver to warm up--had brown fat in their bodies. Studies have since shown that adults also have brown fat, albeit at much lower levels, and people with lower body mass indexes (BMIs) tend to have more of it. At a cellular level, brown fat cells are crammed full of energy-generating mitochondria, which give the cells their brown color.

In the new work, Evans' group focused on estrogen-related receptor gamma (ERRγ), a gene that is active at high levels in brown fat cells.

... more about:
»Molecule »Salk »brown fat »drugs »fat cells »mice lacking

"We were interested in what maintains brown fat, even when we're not exposed to cold all the time," says Maryam Ahmadian, a Salk research associate and first author of the new paper.

The team found that brown fat cells express the ERRγ gene all the time (not just in response to cold) and that white fat cells do not express the gene at all. And by studying mice lacking the gene for ERRγ (and therefore unable to make the ERRy molecule), the team observed that all brown fat cells resembled white cells in these mice. Additionally, the animals were unable to maintain their body temperature when exposed to cold temperatures. While 80 percent of normal mice are able to handle a temperature drop, all mice lacking ERRγ did not tolerate the cold. However, there was no difference in the metabolism or weight of the mice. Together, the experiments reveal that ERRγ is key to helping brown fat maintain its identity and its ability to respond to cold.

Since the ERRγ gene codes for a protein that can travel into the cell nucleus and directly control the expression of other genes, the team also probed which genes were mediated by ERRγ in brown fat cells. They pinpointed a number of genes already known to be important in brown fat, but which hadn't been specifically linked to ERRγ in the past.

"We uncovered the factors that are both involved in protection against the cold and underpin brown fat identity," says Michael Downes, a Salk senior scientist and co-senior author of the paper.

The group is planning future studies that look at the effect of activating ERRγ in white fat cells--which they suspect could make some white fat resemble brown fat, and potentially help treat obesity and diabetes. They also want to study whether the role of ERRγ in the brown fat of humans is the same as what they've observed in mice.

###

Other researchers on the study were Sihao Liu, Nasun Hah, Weiwei Fan, Eiji Yoshihara, C. Daniel De Magalhaes Filho, Sandra Jacinto, Ruth Yu and Annette Atkins of the Salk Institute; Shannon Reilly, Andrew Gomex and Alan Saltiel of the University of California San Diego; Pooja Jha and Johan Auwerx of Ecole Polytechnique Federale de Lausanne; and Christopher Liddle of the University of Sydney.

The work and the researchers involved were supported by grants from the National Institutes of Health, the Howard Hughes Medical Institute, the Glenn Foundation for Medical Research, the Leona M. and Harry B. Helmsley Charitable Trust, Ipsen/Biomeasure, California Institute for Regenerative Medicine, The Ellison Medical Foundation, a gift from Steven and Lisa Altman, the National Health and Medical Research Council of Australia, the UCSD Diabetes Research Center, the Chapman Foundation, the Velux Stiftung and the Swiss National Science Foundation.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

Further reports about: Molecule Salk brown fat drugs fat cells mice lacking

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>