Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule that gives energy-burning brown fat its identity could lead to drugs for obesity

14.03.2018

While most fat cells in the human body store energy, everyone has a small subset of brown fat cells that do the opposite--burn energy and generate heat. Now, Salk researchers have discovered how the molecule ERRγ gives this "healthier" brown fat its energy-expending identity, making those cells ready to warm you up when you step into the cold, and potentially offering a new therapeutic target for diseases related to obesity. The paper appears in Cell Reports on March 13, 2018.

"This not only advances our understanding of how the body responds to cold, but could lead to new ways to control the amount of brown fat in the body, which has links to obesity, diabetes and fatty liver disease," says senior author Ronald Evans, Howard Hughes Medical Institute investigator and holder of Salk's March of Dimes Chair in Molecular and Developmental Biology.


Infrared images indicate the much warmer temperatures of a normal mouse (left) compared to a mouse unable to make ERR gamma (right).

Credit: Salk Institute

Until about a decade ago, scientists thought that only babies--who can't yet shiver to warm up--had brown fat in their bodies. Studies have since shown that adults also have brown fat, albeit at much lower levels, and people with lower body mass indexes (BMIs) tend to have more of it. At a cellular level, brown fat cells are crammed full of energy-generating mitochondria, which give the cells their brown color.

In the new work, Evans' group focused on estrogen-related receptor gamma (ERRγ), a gene that is active at high levels in brown fat cells.

... more about:
»Molecule »Salk »brown fat »drugs »fat cells »mice lacking

"We were interested in what maintains brown fat, even when we're not exposed to cold all the time," says Maryam Ahmadian, a Salk research associate and first author of the new paper.

The team found that brown fat cells express the ERRγ gene all the time (not just in response to cold) and that white fat cells do not express the gene at all. And by studying mice lacking the gene for ERRγ (and therefore unable to make the ERRy molecule), the team observed that all brown fat cells resembled white cells in these mice. Additionally, the animals were unable to maintain their body temperature when exposed to cold temperatures. While 80 percent of normal mice are able to handle a temperature drop, all mice lacking ERRγ did not tolerate the cold. However, there was no difference in the metabolism or weight of the mice. Together, the experiments reveal that ERRγ is key to helping brown fat maintain its identity and its ability to respond to cold.

Since the ERRγ gene codes for a protein that can travel into the cell nucleus and directly control the expression of other genes, the team also probed which genes were mediated by ERRγ in brown fat cells. They pinpointed a number of genes already known to be important in brown fat, but which hadn't been specifically linked to ERRγ in the past.

"We uncovered the factors that are both involved in protection against the cold and underpin brown fat identity," says Michael Downes, a Salk senior scientist and co-senior author of the paper.

The group is planning future studies that look at the effect of activating ERRγ in white fat cells--which they suspect could make some white fat resemble brown fat, and potentially help treat obesity and diabetes. They also want to study whether the role of ERRγ in the brown fat of humans is the same as what they've observed in mice.

###

Other researchers on the study were Sihao Liu, Nasun Hah, Weiwei Fan, Eiji Yoshihara, C. Daniel De Magalhaes Filho, Sandra Jacinto, Ruth Yu and Annette Atkins of the Salk Institute; Shannon Reilly, Andrew Gomex and Alan Saltiel of the University of California San Diego; Pooja Jha and Johan Auwerx of Ecole Polytechnique Federale de Lausanne; and Christopher Liddle of the University of Sydney.

The work and the researchers involved were supported by grants from the National Institutes of Health, the Howard Hughes Medical Institute, the Glenn Foundation for Medical Research, the Leona M. and Harry B. Helmsley Charitable Trust, Ipsen/Biomeasure, California Institute for Regenerative Medicine, The Ellison Medical Foundation, a gift from Steven and Lisa Altman, the National Health and Medical Research Council of Australia, the UCSD Diabetes Research Center, the Chapman Foundation, the Velux Stiftung and the Swiss National Science Foundation.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

Further reports about: Molecule Salk brown fat drugs fat cells mice lacking

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>