Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule Prompts Damaged Heart Cells to Repair Themselves After a Heart Attack

14.04.2009
A protein that the heart produces during its early development reactivates the embryonic coronary developmental program and initiates migration of heart cells and blood vessel growth after a heart attack, researchers at UT Southwestern Medical Center have found.

The molecule, Thymosin beta-4 (TB4), is expressed by embryos during the heart’s development and encourages migration of heart cells. The new findings in mice suggest that introducing TB4 systemically after a heart attack encourages new growth and repair of heart cells.

The research findings indicate that the molecule affects developmental gene expression as early as 24 hours after systemic injection. The UT Southwestern study is online and will appear in an upcoming issue of the Journal of Molecular and Cellular Cardiology.

“This molecule has the potential to reprogram cells in the body to get them to do what you want them to do,” said Dr. J. Michael DiMaio, associate professor of cardiothoracic surgery at UT Southwestern and senior author of the study. Obviously, the clinical implications of this are enormous because of the potential to reverse damage inflicted on heart cells after a heart attack.”

Tremendous medical progress has been made to counter the damaging effects of heart attacks, but ordinarily, mammalian hearts are incapable of repairing themselves following damage. They are also limited in their ability to form new blood vessels. Earlier studies demonstrated that TB4 is expressed in the embryonic heart and stimulates cardiac vessels to form. It was therefore thought that introduction of TB4 might activate new vessel growth in the adult heart.

In this mouse study researchers found that TB4 initiates capillary tube formation of adult coronary endothelial cells in tissue culture. The molecule also encourages cardiac regeneration by inhibiting death in heart cells after an injury such as a heart attack and by stimulating new vessel growth.

“We observed that by injecting this protein systemically, there was increased cardiac function after a heart attack,” said Dr. Ildiko Bock-Marquette, assistant professor of cardiothoracic surgery at UT Southwestern and the study’s lead author. “We hope this protein can inhibit cell death that occurs during a heart attack in the short term, and that it may initiate new growth of coronary vessels by activating progenitor cells in the long term.”

Researchers assessed the effect of TB4 on new vessel growth in adult mice after inducing heart attacks and then following up by introducing TB4 into the animals. An examination of the capillary smooth muscle cells following treatment with TB4 showed a significant increase in capillary density in the heart three days afterward near the site of the heart attack, the scientists reported.

Further studies will examine whether the same events occur in larger mammals and which receptors are responsible for the action of this molecule.

Other UT Southwestern researchers involved in the study were Santwana Shrivastava, research assistant; and John Shelton, senior research scientist. Study authors also included Dr. Teg Pipes, former postdoctoral fellow; Jeffrey Thatcher, a doctoral candidate in biomedical engineering; Dr. Cristi Galindo, postdoctoral research fellow; and co-senior author, Dr. Eric Olson, chairman of molecular biology.

The work was supported by the Ted Nash Long Life Foundation, the American Heart Association, and the National Institutes of Health.

Visit http://www.utsouthwestern.org/heartlungvascular to learn more about UT Southwestern’s clinical services in cardiology and cardiothoracic and vascular surgery.

Dr. J. Michael DiMaio -- http://www.utsouthwestern.edu/findfac/professional/0,2356,36393,00.html

Katherine Morales | Newswise Science News
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.org/heartlungvascular
http://www.utsouthwestern.edu/findfac/professional/0,2356,36393,00.html

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>