Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule involved in heart failure now implicated in heart attack damage

16.09.2010
A molecule known to be involved in progressive heart failure has now been shown to also lead to permanent damage after a heart attack, according to researchers at Thomas Jefferson University.

To prove this novel conclusion, the research team used gene therapy to inhibit the small protein, kinase known as G protein-coupled receptor kinase 2 (GRK2), and found heart muscles cells in mice were substantially protected against destruction that would otherwise occur after an induced myocardial infarction (MI), or heart attack.

Conversely, mice engineered to express excess GRK2 had more damage than would have been expected after an MI, the researchers say in the article currently found online at Circulation Research and to be published in the October 29th issue.

These finding suggest that humans experiencing a heart attack might be helped with delivery of a therapeutic targeting inhibition of GRK2, says Walter J. Koch, Ph.D., Director of the Center for Translation Medicine at Jefferson.

"Our results clearly show that GRK2 promotes cell death after a heart attack, so an inhibitor of this molecule is likely beneficial in preventing permanent damage, if delivered quickly enough," he says. "Currently, we have a gene therapy approach but for this indication a small molecule would be preferred."

Dr. Koch says that while it may be years before this concept can be tested in patients experiencing an MI, he expects anti-GRK2 gene therapy will be tested in patients with heart failure much sooner. A Phase I clinical trial for GRK2-targeted gene therapy is preparing to be launched, pending federal approval.

Dr. Koch and his colleagues have been working for 15 years to link GRK2 to heart failure in patients. They have demonstrated that the protein puts a brake on the beta-adrenergic receptors that respond to hormones (adrenalin and noradrenalin) that drive the heart beat – the rate and force of contractile function in heart cells. This braking action is enhanced in chronic heart failure, and relieving it by inhibiting activity and expression of GRK2 allows the heart to work better, the researchers have shown in animal studies using gene therapy.

The question they looked at in this study is whether GRK2 plays any role after a heart attack. Most cardiology researchers theorized that it was protective, because expression of the protein is increased by three to four times immediately after a heart attack, Dr. Koch says. "People always thought that GRK2 was working to shut off beta receptors because injured hearts were pumping out too much adrenaline, and that this blocking of over activity in an injured heart is protective."

But what the researchers discovered is that over production of GRK2 following a heart attack actually stimulates pro-death pathways in myocyctes (heart cells) outside of the initial zone of damage. They specifically found an inverse link between GRK2 activity and the production of nitric oxide (NO), a molecular messenger that protects the heart against damage caused by a sudden loss of blood. "When there is more GRK2, there is less NO, and vice versa," Dr. Koch says. They believe that GRK2 may be affecting NO production by inhibiting the prosurvival protein kinase Akt, which itself regulates NO. (more)

The mice MI studies then proved that inhibiting GRK2 protected heart cells, Dr. Koch says.

"Our results clearly show that GRK2 is a pathological target in the heart, involved in both progressive heart failure and in death of heart cells after a heart attack," he says.

The study was supported in part from grants from the National Institutes of Health and the American Heart Association.

Rick Cushman | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: GRK2 Molecule gene therapy heart cells heart failure

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>