Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular troublemakers instead of antibiotics?

29.07.2016

How proteins prevent communication between bacteria

They may be slimy, but they are a perfect environment for microorganisms: biofilms. Protected against external influences, here bacteria can grow undisturbed, and trigger diseases. Scientists at Kiel University, in cooperation with colleagues at the Hamburg University of Technology (TUHH) in Hamburg-Harburg, are researching how it can be possible to prevent the formation of biofilms from the beginning.


Microscopic recordings show biofilms of Klebsiella oxytoca formed in flow-through cells. The protein QQ-2 leads to a significant reduction in biofilm formation in comparison with with the control

Nancy Weiland-Bräuer

On this basis, alternatives to antibiotics could be developed, as many pathogens are already resistant to most commercially used antibiotics. The study published in “Frontiers in Microbiology” shows that strategies from nature are particularly effective at inhibiting biofilms.

A thin layer floating on water, dental plaque, or slimy black coatings in the washing machine detergent drawer: biofilms originate when cells attach to surfaces, and organise themselves into coordinated three-dimensional consortia, embedded in an extracellular matrix. It becomes problematic when biofilms form on medical devices or implants.

Pathogenic bacteria, which trigger deseases, pose a particularly serious threat, as they cannot be treated with normal antibiotics when growing within a biofilm. Therefore: “One way to prevent illnesses is to stop biofilms forming in the first place,” according to Professor Ruth Schmitz-Streit from the Institute of General Microbiology at Kiel University.

In order to coordinate themselves and establish consortia on surfaces, the bacteria must communicate with each other via signal molecules (so-called “autoinducers”). If this communication is disrupted, no biofilm can be formed. This cell-to-cell communication, known as “quorum sensing” (QS), can be influenced by disruptive biomolecules (“quorum quenching” or QQ proteins).

“Proteins can break down these signal molecules, or modify them in such a way that they are no longer functional,” explained Schmitz-Streit. Therefore, the goal of the study, financed by the Federal Ministry of Education and Research (BMBF), was to find QQ proteins which disrupt this communication between bacteria as effectively as possible.

In contrast with previous studies, Professor Ruth Schmitz-Streit and Dr. Nancy Weiland-Bräuer, also from Kiel University, concentrated their search on natural environments outside the laboratory. “Because principles which occur in nature have evolved and established over a long time period and are therefore particularly effective,” said Schmitz-Streit.

This was demonstrated by the research team by means of a metagenomic approach: they took samples from seawater, from glaciers, but also from jellyfish or from biofilm residue from a washing machine. They extracted the complete DNA from the samples, and used this as a basis to identify proteins with the ability to break down the signal molecules, or render them ineffective.

While doing so, Schmitz-Streit and Weiland-Bräuer determined that the number of QQ proteins which can prevent cell-to-cell communication is extremely high in the marine environmental samples taken – higher than with terrestrial samples.

“As the oldest ecosystem, the marine system – including the oceans, water or algae – is incredibly rich in new, undiscovered substances. It offers a huge potential regarding biological activities and QQ mechanisms,” said Schmitz-Streit.

The research group discovered even more: the communication-disrupting protein QQ-2 proved itself to be particularly effective during the investigations. “This protein is very robust and can prevent many different types of biofilms,” explained Weiland-Bräuer. Previous studies focused more on disrupting a particular language of bacteria. “In contrast, the QQ-2 protein is orientated towards a 'universal language', and can disrupt the communication of different bacteria. This makes it a 'general troublemaker'.”

This fundamental research provides important results which may lead to biotechnological and medical applications in future. If the communication of pathogenic bacteria can be deliberately disrupted, it prevents the bacteria from forming biofilms and triggering deseases.

In light of the increasing resistance of pathogenic bacteria to antibiotics, the potent effect of natural QQ mechanisms could be an effective approach to the development of medications.

Original publication:
Weiland-Bräuer, N., Kisch, M., Pinnow, N., Liese, A., Schmitz, R.A.: "Highly effective inhibition of biofilm formation by the first 1 metagenome-derived AI-2 quenching enzyme." Frontiers in Microbiology, 13 July 2016. DOI: 10.3389/fmicb.2016.01098
http://journal.frontiersin.org/article/10.3389/fmicb.2016.01098/full

Contact:
Prof. Ruth A. Schmitz-Streit
Institute of General Microbiology
Tel.: +49 (0)431/880 -4334
E-mail: rschmitz@ifam.uni-kiel.de

Dr. Nancy Weiland-Bräuer
Institute of General Microbiology
Tel.: +49 (0)431/880 -1648
E-mail: nweiland@ifam.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Further information:
http://www.uni-kiel.de

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>