Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular trigger for Cerebral Cavernous Malformation identified

26.11.2015

Researchers in Italy, Germany and the United States have identified a regulatory protein crucial for the development of Cerebral Cavernous Malformation – a severe and incurable disease mainly affecting the brain microvasculature. The results, which are published in EMBO Molecular Medicine, show that the KLF4 protein plays a central role in the development of CCM lesions.

Cerebral Cavernous Malformation (CCM) is caused by mutations in the CCM1, CCM2 or CCM3 genes, and is characterized by vascular lesions that can lead to cerebral haemorrhage. Previous research has shown that ablation of CCM1 in mice leads to CCM pathology via a mechanism called Endothelial-to-mesenchymal transition (EndMT). While considerable effort has gone into establishing that EndMT occurs and plays a role in a variety of pathologic conditions, its molecular triggers have not been well defined.

The scientists found that KLF4 – a zinc-finger transcription factor of the Kruppel-Like Factor family – is strongly upregulated in the lesions of CCM1 knockout mice.

“Our study demonstrates that the genetic inactivation of KLF4 blocks the development and progression of CCM lesions and prevents mouse mortality due to brain haemorrhage,” says EMBO Member Elisabetta Dejana of the Italian FIRC Institute of Molecular Oncology and the University of Milan, the corresponding author of the study. KLF4 functions as one of the reprogramming “Yamanaka factors” in pluripotent stem cell induction cocktails.

The CCM pathway is required in endothelial cells for normal cardiovascular development and to prevent postnatal vascular malformations. The malformations are usually located in the white matter (cortex) of the brain. CCM are present in up to 0.5% of the general population, and they account for a large proportion (8-15%) of all brain and spinal vascular malformations.

Presently, there are no pharmacological treatments to prevent development or reduce the size of existing CCMs. The study identifies novel potential pharmacological targets to prevent the progression of this disease.

The study was conducted by researchers of the Italian FIRC Institute of Molecular Oncology and the University of Milan, in collaboration with the Max Planck Institute for Molecular Medicine in Munster, Germany, University Hospitals Case Medical Center in Cleveland and University of Virginia, United States, and with the support of Telethon and the Italian Association for Cancer Research (AIRC).

KLF4 is a key determinant in the development and progression of Cerebral Cavernous Malformations

Roberto Cuttano, Noemi Rudini, Luca Bravi, Monica Corada, Costanza Giampietro, Eleanna Papa, Marco Francesco Morini, Luigi Maddaluno, Nicolas Baeyens, Ralf H.
Adams, Mukesh K. Jain, Gary K. Owens, Martin Schwartz, Maria Grazia Lampugnani and Elisabetta Dejana

Read the paper: http://embomolmed.embopress.org/cgi/doi/10.15252/emmm.201505433

doi: 10.15252/emmm.201505433

Further information on EMBO Molecular Medicine is available at www.embomolmed.embopress.org

Media Contacts
Yvonne Kaul
Communications Officer
yvonne.kaul@embo.org

Roberto Buccione
Editor, EMBO Molecular Medicine
Tel: +49 6221 8891 412
roberto.buccione@embo.org

About EMBO
EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. 
For more information: www.embo.org

Weitere Informationen:

http://www.embo.org/news/research-news/research-news-2015/molecular-trigger-for-...

Yvonne Kaul | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>