Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular switch identified that controls key cellular process

02.08.2012
The body has a built-in system known as autophagy, or 'self-eating,' that controls how cells live or die. Deregulation of autophagy is linked to the development of human diseases, including neural degeneration and cancer.

In a study published online this week in the Proceedings of the National Academy of Sciences, scientists at the Ludwig Institute for Cancer Research in Oxford discovered a critical molecular switch that regulates autophagy. They also studied the links between autophagy and a cellular process called senescence that stops cell growth permanently.

The researchers identified ASPP2, a tumor suppressor, as a molecular switch that can dictate the ability of a common cancer gene, known as the RAS oncogene, to either stop or promote senescence.

As Yihua Wang and researchers in Xin Lu's group at the Ludwig Institute investigated the life cycle of fibroblast cells – the most common connective tissue cells in animals – they found that reduced levels of the ASPP2 protein increase RAS oncogene-induced autophagic activity. This in turn prevented cells from entering senescence. Without ASPP2, the cells continued to proliferate unchecked, thereby promoting tumor growth.

ASPP2 is known to play a role in suppressing tumor development. Mice that have a deficiency or malfunction in this protein have a predisposition to developing tumors. And low ASPP2 levels in patients are linked to poor prognoses in cancers, such as large B-cell lymphomas. Reduced ASPP2 expression has also been observed in highly metastatic breast tumors. But until now, researchers did not understand why.

"We found that in the presence of the common cancer-causing RAS oncogene, ASPP2 interacted with a protein complex that is responsible for deciding cell fate via autophagy," said Yihua Wang, PhD, Ludwig researcher in Oxford.

"What this means is that the cell's emergency stop button is disabled when ASPP2 expression is reduced or lost, allowing it to proliferate unchecked as with cancer," added Wang.

"The balance between the RAS oncogene and ASPP2 activity is crucial to determining whether or not tumor growth is promoted. Our next step will be to identify ways to alter ASPP2 activity at that critical switch point. This could be an effective way to treat cancers with reduced ASPP2 expression and mutated RAS, such as breast and colon cancers," concluded Wang.

"Some of the recently developed anti-cancer drugs are potent inducers of autophagy. The new findings may also offer an explanation as to why patient response to these drugs can vary dramatically. There are factors at play within the body that can dictate authophagic activity and impact clinical outcomes," said Xin Lu, PhD, director of Ludwig's Oxford Branch. "While further study is needed, these findings may in the longer term help doctors to identify patients who are more likely to respond well to autophagic inhibition," added Lu.

About The Ludwig Institute for Cancer Research

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>