Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The molecular origins of morphological diversity

07.01.2010
A research team at RIKEN has clarified details of key mechanisms driving the emergence of functional novelty in genes of eukaryotes. In a paper to appear in PLoS Genetics, the researchers analyze the molecular-level mechanisms of functionalization in duplicate genes, shedding light on their relationship to morphological evolution.

Gene duplication, a process whereby a region of DNA containing a gene is duplicated as a result of cell division errors, plays a major role in eukaryotic evolution. Over time, mutations in duplicate genes induce a novel evolutionary paths potentially leading to functionalization, an important source of diversification in complex organisms.

The researchers investigated two mechanisms believed to play a role in such functionalization: divergence of gene expression and of protein function. A set of 492 gene pairs associated with morphological diversification in the model organism Arabidopsis thaliana were examined and classified according to their level of morphological diversification.

Results indicated that in gene pairs with high and low morphological diversification, divergence rates are significantly higher than in pairs with no diversification. Analysis also suggested that whereas protein function plays a major role in such diversification, gene expression plays a minor one. At the genome level, instances of either mechanism leading to diversification were found to be extremely rare, indicating that only a few duplicate genes are crucial to morphological evolution.

While making up as much as one fifth of all genes in the eukaryotic cell, duplicate genes have eluded functional analysis due to their redundancy. The success of the current research demonstrates a novel approach, promising fundamental advances in our understanding of genetic function.

For more information, please contact
Dr. Kosuke Hanada
Gene Discovery Research Group
RIKEN Plant Science Center
Tel: +81-(0)45-503-9578 / Fax: +81-(0)45-503-9580
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Mail: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp/engn/r-world/info/release/press/2009/091224/index.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>