Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular high-speed Origami - Researchers elucidate important mechanism of protein folding

09.05.2014

Proteins are responsible for nearly every essential process of life. Their form and structure are of crucial importance for their functionality.

Scientists at the Max Planck Institute of Biochemistry (MPIB) have recently discovered a so far unknown sequence of reactions which is necessary for newly generated proteins to acquire their correct structure.


GroEL/ES nano-cage (light blue and white) with encapsulated substrate protein (orange).

Image: Andreas Bracher / Copyright: MPI of Biochemistry

„In the mechanism we found, the folding is accomplished in a number of fast intermediate steps rather than in one single block“, explains Manajit Hayer-Hartl, MPIB research group leader. „Because this mode of action is energetically more favorable, the proteins are folded not only correctly, but also much faster than previously assumed.“

Proteins are the workhorses of the cell and thus responsible for almost all biological functions including metabolism, signal transmission or the determination of the cell’s shape. However, before they can fulfill their various tasks, the chain-like molecules must first adopt an intricate three-dimensional conformation. This process is called protein folding and is one of the most important processes in biology.

In fact, in the event of improper folding, proteins are often no more able to carry out their duties, or even tend to clump together in aggregates. This in turn can lead to severe diseases like Alzheimer’s or Parkinson’s. In order to avoid this, specialized proteins, the so-called chaperones, help other proteins to adopt their proper shape.

The bacterial chaperones GroEL and GroES serve as an example for this principle: together, they build up a cage-like structure in which they encapsulate new, not yet folded proteins, thereby al-lowing them to fold properly. However, the exact way in which this is accomplished has so far been unclear and is a research topic of the MPIB team led by Manajit Hayer-Hartl and F. Ulrich Hartl, in collaboration with John Engen from Northeastern University in Boston.

Active acceleration of folding
„Our results demonstrate that the chaperones not only prevent protein clumping, but also dramatically accelerate the folding process”, explains Florian Georgescauld, scientist at the MPIB. „Surprisingly, the chaperones achieve this by changing the mechanism of folding: Instead of folding in one large single block, the protein gets its final structure in a series of small, rapid steps – like an elaborate high-speed Origami.” The researchers think that splitting up the reaction might render it energetically more favorable, which in turn would lead to increased speed. Hence, the folding process is finished in a few seconds rather than in several minutes.

The study shows for the first time that chaperones can act not only passively, by preventing aggregation, but as an active folding cage that catalyzes the folding process. This results in a high-speed folding mechanism which is of particular biological relevance, so the researchers say, since in this way proteins can be folded faster than they are produced. Thus, a backlog of proteins which are not yet or improperly folded and the disastrous consequences which might go along with this can be avoided.
[HS]

Original Publication:
F. Georgescauld, K. Popova, A. J. Gupta, A. Bracher, J. R. Engen, M. Hayer-Hartl and F. U. Hartl: GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding. Cell, May 8, 2014.
DOI: 10.1016/j.cell.2014.03.038

Contact:
Dr. Manajit Hayer-Hartl
Chaperonin-assisted Protein Folding
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: mhartl@biochem.mpg.de
http://www.biochem.mpg.de/hayer-hartl

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de/news

Weitere Informationen:

http://www.biochem.mpg.de/news/ueber_das_institut/forschungsbereiche/strukturforschung/hayer_hartl_press - Press Page of the Research Group "Chaperonin-assisted Protein Folding" (Manajit Hayer-Hartl)
http://www.biochem.mpg.de/en/rg/hayer-hartl - Website of the Research Group "Chaperonin-assisted Protein Folding" (Manajit Hayer-Hartl)

Anja Konschak | Max-Planck-Institut

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>