Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular fingerprint discovered that may improve outcomes for head and neck cancer patients

24.01.2012
Researchers at Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, the University Hospital for Einstein, have found a biomarker in head and neck cancers that can predict whether a patient's tumor will be life threatening.

The biomarker is considered particularly promising because it can detect the level of risk immediately following diagnosis. This discovery could become a component of a new test to guide how aggressively those with head and neck tumors should be treated. The findings were published online January 9 in the American Journal of Pathology.

"Previous efforts to identify biomarkers for guiding treatment of head and neck cancer have not developed anything clinically useful for patients," said Geoffrey Childs, Ph.D., professor of pathology at Einstein and co-senior author of the paper.

Head and neck cancers, the sixth most common malignancy among men worldwide, most often affect the mouth, back of the throat and larynx (voice box). Smoking and alcohol use are major risk factors. Only half of patients are still alive more than five years after diagnosis—a survival rate that hasn't changed in 40 years.

In their study, researchers took tissue samples from tumors and nearby healthy tissue of 123 head and neck cancer patients at Montefiore and measured levels of 736 members of a class of RNA molecules known as microRNAs. Certain members of this family of RNAs, which regulate protein abundance in cells, are abnormally expressed in head and neck cancers as well as every other malignant cell type yet examined. Of all the microRNAs measured, one in particular – miR-375 – stood out for being the most down-regulated (i.e., expressed at low levels) in head and neck tumors compared with its levels in adjacent normal tissue.

The researchers ranked these 123 patients according to how extreme the difference was between the miR-375 in their tumor and in adjacent normal tissue, with that difference expressed as the ratio "miR-375 level in patient's tumor tissue divided by miR-375 level in patient's normal tissue." All patients were then followed throughout the course of their illness.

MiR-375 proved to be a highly useful biomarker for predicting disease outcome. The patients for whom the difference between their tumor and normal-tissue miR-375 levels was most extreme (i.e., the one-fourth of patients with the lowest ratios) were nearly 13 times more likely to die or 9 times more likely to experience distant spread (metastasis) of their cancer compared to patients with higher miR-375 ratios.

"As as a result of our study," Dr. Childs noted, "we hope that miR-375 will become part of a laboratory test to determine which patients have potentially lethal tumors and therefore should be treated aggressively following initial diagnosis. Our entire head and neck cancer group is working to identify and refine additional biomarkers to create a useful clinical test or 'personalized genetic signature' to help individual patients get the best possible treatment."

The title of the paper is "Low-Level Expression of miR-375 Correlates with Poor Outcome and Metastasis While Altering the Invasive Properties of Head and Neck Squamous Cell Carcinomas." Other Einstein-Montefiore researchers involved in the study were Jeffrey E. Segall, Ph.D.; Thomas M. Harris, Ph.D.; Lizandra Jimenez, M.S.; Nicole Kawachi, M.S.; Thomas J. Belbin, Ph.D.; Andrew Ramnauth, B.S.; Olivier D. Loudig, Ph.D.; Christian E. Keller, M.D.; Nicolas F. Schlecht, Ph.D.; and Michael B. Prystowsky, M.D., Ph.D. Surgery was carried out by co-author Richard V. Smith, M.D. and members of the head and neck surgery team. This research was supported by the National Cancer Institute, part of the National Institutes of Health.

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2011, Einstein received nearly $170 million in awards from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its affiliation with Montefiore Medical Center, the University Hospital for Einstein, and six other hospital systems, the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering 155 residency programs to more than 2,200 physicians in training. For more information, please visit www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Montefiore Medical Center

As the University Hospital for Albert Einstein College of Medicine, Montefiore is a premier academic medical center nationally renowned for its clinical excellence, scientific discovery and commitment to its community. Montefiore is consistently recognized among the top hospitals nationally by U.S. News & World Report, and excels at educating tomorrow's healthcare professionals in superior clinical and humanistic care. Linked by advanced technology, Montefiore is a comprehensive and integrated health system that derives its inspiration for excellence from its patients and community. For more information, please visit www.montefiore.org and www.montekids.org and follow us on Twitter @MontefioreNews.

Kimberly Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>