Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular fingerprint discovered that may improve outcomes for head and neck cancer patients

24.01.2012
Researchers at Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, the University Hospital for Einstein, have found a biomarker in head and neck cancers that can predict whether a patient's tumor will be life threatening.

The biomarker is considered particularly promising because it can detect the level of risk immediately following diagnosis. This discovery could become a component of a new test to guide how aggressively those with head and neck tumors should be treated. The findings were published online January 9 in the American Journal of Pathology.

"Previous efforts to identify biomarkers for guiding treatment of head and neck cancer have not developed anything clinically useful for patients," said Geoffrey Childs, Ph.D., professor of pathology at Einstein and co-senior author of the paper.

Head and neck cancers, the sixth most common malignancy among men worldwide, most often affect the mouth, back of the throat and larynx (voice box). Smoking and alcohol use are major risk factors. Only half of patients are still alive more than five years after diagnosis—a survival rate that hasn't changed in 40 years.

In their study, researchers took tissue samples from tumors and nearby healthy tissue of 123 head and neck cancer patients at Montefiore and measured levels of 736 members of a class of RNA molecules known as microRNAs. Certain members of this family of RNAs, which regulate protein abundance in cells, are abnormally expressed in head and neck cancers as well as every other malignant cell type yet examined. Of all the microRNAs measured, one in particular – miR-375 – stood out for being the most down-regulated (i.e., expressed at low levels) in head and neck tumors compared with its levels in adjacent normal tissue.

The researchers ranked these 123 patients according to how extreme the difference was between the miR-375 in their tumor and in adjacent normal tissue, with that difference expressed as the ratio "miR-375 level in patient's tumor tissue divided by miR-375 level in patient's normal tissue." All patients were then followed throughout the course of their illness.

MiR-375 proved to be a highly useful biomarker for predicting disease outcome. The patients for whom the difference between their tumor and normal-tissue miR-375 levels was most extreme (i.e., the one-fourth of patients with the lowest ratios) were nearly 13 times more likely to die or 9 times more likely to experience distant spread (metastasis) of their cancer compared to patients with higher miR-375 ratios.

"As as a result of our study," Dr. Childs noted, "we hope that miR-375 will become part of a laboratory test to determine which patients have potentially lethal tumors and therefore should be treated aggressively following initial diagnosis. Our entire head and neck cancer group is working to identify and refine additional biomarkers to create a useful clinical test or 'personalized genetic signature' to help individual patients get the best possible treatment."

The title of the paper is "Low-Level Expression of miR-375 Correlates with Poor Outcome and Metastasis While Altering the Invasive Properties of Head and Neck Squamous Cell Carcinomas." Other Einstein-Montefiore researchers involved in the study were Jeffrey E. Segall, Ph.D.; Thomas M. Harris, Ph.D.; Lizandra Jimenez, M.S.; Nicole Kawachi, M.S.; Thomas J. Belbin, Ph.D.; Andrew Ramnauth, B.S.; Olivier D. Loudig, Ph.D.; Christian E. Keller, M.D.; Nicolas F. Schlecht, Ph.D.; and Michael B. Prystowsky, M.D., Ph.D. Surgery was carried out by co-author Richard V. Smith, M.D. and members of the head and neck surgery team. This research was supported by the National Cancer Institute, part of the National Institutes of Health.

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2011, Einstein received nearly $170 million in awards from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its affiliation with Montefiore Medical Center, the University Hospital for Einstein, and six other hospital systems, the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering 155 residency programs to more than 2,200 physicians in training. For more information, please visit www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Montefiore Medical Center

As the University Hospital for Albert Einstein College of Medicine, Montefiore is a premier academic medical center nationally renowned for its clinical excellence, scientific discovery and commitment to its community. Montefiore is consistently recognized among the top hospitals nationally by U.S. News & World Report, and excels at educating tomorrow's healthcare professionals in superior clinical and humanistic care. Linked by advanced technology, Montefiore is a comprehensive and integrated health system that derives its inspiration for excellence from its patients and community. For more information, please visit www.montefiore.org and www.montekids.org and follow us on Twitter @MontefioreNews.

Kimberly Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Blood and sweat: Wearable medical sensors will get major sensitivity boost
18.02.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>