Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Chaperone for Membrane Proteins

09.02.2012
Heidelberg biochemists decipher the “escort service” for biological solar collectors
For photosynthesis, the chloroplasts of all green plants contain biological solar collectors known as light-harvesting proteins. Because these proteins are not manufactured in the plant cell where they are used, they need to be transported. A specific molecular chaperone ensures they reach their destination. Biochemists at Heidelberg University have now gained elementary knowledge on the structure and function of this chaperone with the help of a variety of methods from structural biology.

The process of photosynthesis takes energy from the sun and converts it into chemical energy, creating oxygen in the process. For this purpose, the chloroplasts of all green plants contain biological solar collectors. These light-harvesting proteins are the most frequently occurring membrane proteins on the planet and are absolutely essential for efficient photosynthesis. Like all membrane proteins, the light-harvesting proteins also have characteristic hydrophobic – i.e. water-repellent – regions with which they are embedded in their target membrane. Until they reach the target membrane, in this case membrane systems in the chloroplasts, a chaperone shields the hydrophobic regions from harmful interactions.

The chloroplast proteins cpSRP43 and cpSRP54 function in this chaperone role for the light-harvesting proteins. “Deciphering the three-dimensional structure of the core complex of these two proteins allows us to draw basic conclusions about how the chaperone functions”, explains Prof. Dr. Irm¬gard Sinning of the Heidelberg University Biochemistry Center (BZH). The team of scientists working with Prof. Sinning discovered that two protein motifs take part in the interaction between cpSRP43 and cpSRP54, similar to the motifs that play a central role in regulating access to the genetic material in the cell nucleus. While scientists have known for years about the “histone code” involved in the processes in the nucleus, they now face the puzzle of the newly discovered “arginine code” in the chloroplasts.

The Heidelberg scientists conducted their research in close cooperation with colleagues from the Munich Technical University and the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). The researchers combined different structural biology methods in the pursuit of their work. X-ray structure analysis, nuclear magnetic resonance (NMR) spectroscopy, and small angle X-ray scattering were key in revealing the architecture and dynamics of the core complex of cpSRP43 und cpSRP54. In addition, they took advantage of the Biochemistry Center’s protein crystallization platform, which receives support from the Cluster of Excellence CellNetworks at Heidelberg University. The results of the research were published in “Nature Structural & Molecular Biology”.

Original publication:
I. Holdermann, N.H. Meyer, A. Round, K. Wild, M. Sattler, I. Sinning: Chromodomains read the arginine code of post-translational targeting. Nat Struct Mol Biol. 2012 Jan 8. doi: 10.1038/nsmb.2196

Contact:
Prof. Dr. Irmgard Sinning
Biochemistry Center, phone: +49 6221 54-4781
irmi.sinning@bzh.uni-heidelberg.de

Communications and Marketing
Press Office, Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>