Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular barcodes – identification of 16 new species of Caenorhabditis

21.11.2011
Caenorhabditis are usually thought of as soil nematodes, happily living in compost heaps. The famous (scientifically speaking) Caenorhabditis elegans has provided a wealth of information about developmental processes and cell death.

These tiny worms have been at the forefront of three Nobel prizes and have even been sent into space! However all other known Caenorhabditis species are as distantly related to C. elegans as mouse is to man. New research published in BioMed Central's open access journal BMC Evolutionary Biology looked at the relationship between the ten known species of Caenorhabditis and found another 16. In the process it was discovered that these particular nematodes prefer to live in rotting fruit and vegetation rather than soil.

A team of researchers, led by Dr Karin Kiontke, from New York University, and Marie-Anne Félix, from the Institute Jacques Monod in Paris, delved into rotting vegetation collected from around the world. They found Caenorhabditis worms in samples from temperate and tropical climes across four continents, but only in those which contained rotting fruit or vegetable material. Some species, like C. elegans, were found in many locations, but others in only one.

'Worms' were separated according to physical characteristics such as color, tail length, and position of reproductive organs. True separation between species was determined by the animals being unable to mate or to produce viable offspring, and the species were molecular barcoded using the ITS2 regions of DNA.

Dr Kiontke explained, "Using our new data we were able to generate an evolutionary tree for all 26 species which showed that the history of Caenorhabditis has had many evolutionary reversals and convergences. For example, the spicules (the male reproductive organs) increased in length after the first species diverged from the Caenorhabditis ancestor, but decreased again in a more modern ancestor of five present-day species. Also, it is clear that hermaphroditism has evolved independently three times within the Caenorhabditis genus. The newly discovered species will be an important resource for future research and will doubtless teach us much more about the evolution of genomes, reproductive modes and development. Although we still have not yet found the elusive close relative for C. elegans we now know where to search."

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: 44-20-3192-2370
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits Karin C Kiontke, Marie-Anne Félix, Michael Ailion, Matthew V Rockman, Christian Braendle, Jean-Baptiste Pénigault and David HA Fitch BMC Evolutionary Biology (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Evolutionary Biology is an Open Access, peer-reviewed online journal that considers articles on all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Hidden dynamics detected in neuronal networks
23.07.2019 | Forschungszentrum Juelich

nachricht Towards a light driven molecular assembler
23.07.2019 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>