‘Molecular Ballets’ and Microscopic Battle of the Sexes Boost Mating Success

Those behaviors often end once the mating is complete. But male and female insects continue to influence each other on molecular, cellular and physiological levels – even after the partners go their separate ways, according to research by Mariana Wolfner, Cornell professor of molecular biology and genetics.

Wolfner spoke on “Seminal influences: How Proteins Transferred by Mating Males Affect Reproduction and Behavior of Female Fruit Flies,” at the annual meeting of the American Association for the Advancement of Science Feb. 21 in Washington, D.C.

Molecules transferred from male to female fruit flies (Drosophila melanogaster) during mating cause a variety of changes in the female long after the male has left the scene, Wolfner said – in some cases working in a kind of cooperative molecular ballet; and in other ways boosting the male’s competitive advantage against rivals.

Understanding each of those interactions better could lead to new ways of curtailing reproduction in harmful insects, or boosting it in beneficial ones, she said. The research could also help answer key questions about chemical communication and evolution across species.

After a male and female fruit fly mate, the female undergoes a series of changes that not only improve her chances of reproductive success, but also boost the male’s chances of out-propagating his potential competitors. Among these changes: mated females have increased appetites and produce more antimicrobial peptides that kill microbial and fungal invaders; their reproductive tracts open to allow entry and storage of sperm; and they show more resistance to mating attempts by other males.

To pinpoint the causes, Wolfner and colleagues removed individual elements in the mating process and tested the females’ reactions. They first narrowed the cause down to seminal fluid proteins manufactured in the male flies’ accessory gland; then removed individual proteins one by one to match specific molecules and responses.

The intermolecular dialogue is vital for reproduction in general, but it also serves functions that benefit the male and female individually, sometimes leading to a microscopic battle between the sexes, Wolfner said. A mated female that resists mating with other males is more likely to propagate her first partner’s genes, for example. If that partner is less fit, she may lose out by having fewer or poorer quality offspring overall. A female could also lose in the long run if the interaction causes her to produce more eggs, increasing progeny for the male but potentially shortening the female’s lifespan.

Ultimately, Wolfner said, knowledge gained by studying Drosophila could help researchers find ways to control insects that transmit devastating diseases, including dengue fever, West Nile encephalitis or malaria.

“One way to address the spread of these diseases is to interfere the ability of their insect vectors to reproduce. By understanding the molecules that enhance or impede reproduction in Drosophila fruit flies, we gain information that can help to do that,” she said.

John Carberry
Desk: (607) 255-5353
Cell: (607) 227-0767
jjc338@cornell.edu
Blaine Friedlander
(607) 254-8093
bpf2@cornell.edu

Media Contact

John Carberry Newswise Science News

More Information:

http://www.cornell.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors