Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Find Potential Solution To Melanoma s Resistance To Vemurafenib

29.02.2012
Inhibitor XL888 found to restore chemotherapy sensitivity
Researchers at Moffitt Cancer Center in Tampa, Fla., and colleagues in California have found that the XL888 inhibitor can prevent resistance to the chemotherapy drug vemurafenib, commonly used for treating patients with melanoma.

Vemurafenib resistance is characterized by a diminished apoptosis (programmed cancer cell death) response. According to the researchers, the balance between apoptosis and cell survival is regulated by a family of proteins. The survival of melanoma cells is controlled, in part, by an anti-apoptotic protein (Mcl-1) that is regulated by a particular kind of inhibitor.

Their current findings, tested in six different models of vemurafenib resistance and in both test tube studies and in melanoma patients, demonstrated an induced apoptosis response and tumor regression when the XL888 inhibitor restored the effectiveness of vemurafenib.

The study appeared in a recent issue of Clinical Cancer Research, a publication of the American Association for Cancer Research.

"The impressive clinical response of melanoma patients to vemurafenib has been limited by drug resistance, a considerable challenge for which no management strategies previously existed," said study co-author Keiran S. M. Smalley, Ph.D., of Moffitt's departments of Molecular Oncology and Cutaneous Oncology. "However, we have demonstrated for the first time that the heat shock protein-90 (HSP90) inhibitor XL888 overcomes resistance through a number of mechanisms."

The diversity of resistance mechanism has been expected to complicate the design of future clinical trials to prevent or treat resistance to inhibitors such as vemurafenib.

"That expectation led us to hypothesize that inhibitor resistance might best be managed through broadly targeted strategies that inhibit multiple pathways simultaneously," explained Smalley.

The HSP90 family was known to maintain cancer cells by regulating cancer cells, making it a good target for treatment. According to the authors, the combination of vemurafenib and XL888 overcame vemurafenib resistance by targeting HSP90 through multiple signaling pathways.

There was already evidence that HSP90 inhibitors could overcome multiple drug chemotherapy resistance mechanisms in a number of cancers, including non-small lung cancer and breast cancer. Because XL888 is a novel, orally available inhibitor of HSP90, the researchers hoped that it would arrest the cancer cell cycle in melanoma cell lines.

In their study, the inhibition of HSP90 led to the degradation of the anti-apoptopiuc Mcl-1 protein. The responses to XL888 were characterized as "highly durable with no resistant colonies emerging following four weeks of continuous drug treatment." In other studies not using XL888, resistant colonies "emerged in every case," they reported.

"We have shown for the first time that all of the signaling proteins implicated in vemurafenib resistance are ‘clients' of HSP90 and that inhibition of HSP90 can restore sensitivity to vemurafenib," concluded Smalley and his colleagues. "Our study provides the rationale for the dual targeting of HSP90 with XL888 and vemurafenib in treating melanoma patients in order to limit or prevent chemotherapy resistance."

About Moffitt Cancer Center
Follow Moffitt on Facebook: www.facebook.com/MoffittCancerCenter
Follow Moffitt on Twitter: @MoffittNews
Follow Moffitt on YouTube: MoffittNews

Located in Tampa, Moffitt Cancer Center is a National Cancer Institute-designated Comprehensive Cancer Center, which recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt is also a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer.

Ferdie De Vega | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>