Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modified bone drug kills malaria parasite in mice

28.02.2012
A chemically altered osteoporosis drug may be useful in fighting malaria, researchers report in a new study.

Unlike similar compounds tested against many other parasitic protozoa, the drug readily crosses into the red blood cells of malaria-infected mice and kills the malaria parasite. The drug works at very low concentrations with no observed toxicity to the mouse.

The study appears in the Proceedings of the National Academy of Sciences.
The researchers found the drug by screening a library of about 1,000 compounds used in previous efforts to target an important biochemical pathway (called isoprenoid biosynthesis) in cancer and in disease-causing organisms. The new drug lead, BPH-703, inhibits a key enzyme in isoprenoid biosynthesis that enables the malaria parasite to sustain itself and defend itself from the host immune system. The drug has little effect on the same chemical pathway in human or mouse cells, said University of Illinois chemistry professor Eric Oldfield, who led the study.
The lead compounds are chemically modified forms of the osteoporosis drugs Actonel (Risedronate) and Zometa (Zoledronate), Oldfield said. Risedronate and Zoledronate potently block isoprenoid biosynthesis, but are unable to get across the membrane of red blood cells to get to the parasite. The modified forms include a long lipid tail that helps them pass through the lipid-rich membrane of red blood cells, and also enhances the drug’s ability to bind to the target enzyme, geranylgeranyl diphosphate synthase (GGPPS), he said.

“We found that compounds that were really active had a very long hydrocarbon chain,” Oldfield said. “These compounds can cross the cell membrane and work at very low concentrations.”

The World Health Organization estimates that malaria killed 708,000 to 1.003 million people in 2008, most of them in Sub-Saharan Africa and Asia. The malaria parasite has evolved resistance to nearly every drug used so far to combat it, and while some of these drugs still work – especially when used in combination – drug-resistant malaria strains are always emerging.

“It’s important to find new drug targets because malaria drugs last only a few years, maybe 10 years, before you start to get resistance,” Oldfield said. “The parasites mutate and then you lose your malaria drug.”

“We are the first to show that the enzyme GGPPS is a valid target for malaria,” said study co-author Yonghui Zhang, a research scientist in Oldfield’s lab and inventor of the lead compound, BPH-703. “Our work gives a new direction to find new antimalarial drugs.”

Editor’s notes: To reach Eric Oldfield, call: 217-333-3374;
email eoldfiel@illinois.edu.
The paper, “Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium GGPPS and exhibit potent anti-malarial activity,” is available from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Researchers at the University of Freiburg use new method to investigate neural oscillations
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Dragonflies move to the city
14.02.2020 | Technische Universität Braunschweig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>